已知函数f x(x)

当前位置:
>>>已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,(1)求不等式g(x..
已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,(1)求不等式g(x)<0的解集;(2)若|f(x)|≤|g(x)|对任意x∈R恒成立,求a,b;(3)在(2)的条件下,若对一切x>2,均有f(x)≥(m+2)x-m-15成立,求实数m的取值范围.
题型:解答题难度:中档来源:不详
(1)g(x)=2x2-4x-16<0,∴(x+2)(x-4)<0,∴-2<x<4.∴不等式g(x)<0的解集为{x|-2<x<4}.…(4分)(2)∵|x2+ax+b|≤|2x2-4x-16|对x∈R恒成立,∴当x=4,x=-2时成立,∴|16+4a+b|≤0|4-2a+b|≤0,∴16+4a+b=04-2a+b=0,∴a=-2b=-8.…(8分)(3)由(2)知,f(x)=x2-2x-8.∴x2-2x-8≥(m+2)x-m-15 (x>2),即x2-4x+7≥m(x-1).∴对一切x>2,均有不等式x2-4x+7x-1≥m成立.…(10分)而x2-4x+7x-1=(x-1)+4x-1-2≥2(x-1)o4(x-1)-2=2(当x=3时等号成立)∴实数m的取值范围是(-∞,2].…(12分)
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,(1)求不等式g(x..”主要考查你对&&二次函数的性质及应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数的性质及应用
二次函数的定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。
二次函数的图像:
是一条关于对称的曲线,这条曲线叫抛物线。抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c表示抛物线与y轴的交点坐标:(0,c)。
性质:二次函数y=ax2+bx+c,
①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数; ②当a&0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。
二次函数(a,b,c是常数,a≠0)的图像:
&二次函数的解析式:
(1)一般式:(a,b,c是常数,a≠0);(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为&;(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为 。二次函数在闭区间上的最值的求法:
(1)二次函数&在区间[p,g]上的最值问题一般情况下,需要分三种情况讨论解决.当a&0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令&.①&② ③ ④特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.
(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:&特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
发现相似题
与“已知函数f(x)=x2+ax+b(a、b∈R),g(x)=2x2-4x-16,(1)求不等式g(x..”考查相似的试题有:
277536474995393805244758447756453184当前位置:
>>>已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值(1)讨论f(1)和f(-1)是..
已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值(1)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(2)试求函数f(x)在x=-2处的切线方程;(3)试求函数f(x)在区间[-3,2]上的最值.
题型:解答题难度:中档来源:不详
(1)f'(x)=6ax2+2bx-6,在x=1处取得极值,则f′(1)=6a+2b-6=0; 在x=-1处取得极值,则f′(-1)=6a-2b-6=0; 解得a=1;b=0; ∴f(x)=2x3-6x; f′(x)=6x2-6,由f′(x)=6x2-6=0,得x=±1.列表:
&(-∞,-1)
&(-1,1)
&(1,+∞)
↑∴f(1)是极小值;f(-1)是极大值.(2)f′(-2)=6×22-6=18;在x=-2处的切线斜率为18;而f(-2)=2x3-6x=-4;∴切线方程y=18x+32; (3)f(x)=2x3-6x;f′(x)=6x2-6;使f′(x)=6x2-6=0,得x=±1,已经知道了f(1)=-4是极小值,f(-1)=4是极大值,下面考察区间端点:f(2)=2x3-6x=4;f(-3)=2x3-6x=-36∴最大值是f(-1)=f(2)=4;最小值是f(-3)=-36.
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值(1)讨论f(1)和f(-1)是..”主要考查你对&&函数的单调性与导数的关系,函数的极值与导数的关系,函数的最值与导数的关系&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的单调性与导数的关系函数的极值与导数的关系函数的最值与导数的关系
导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&函数的最大值和最小值:
在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值,分别对应该区间上的函数值的最大值和最小值。
&利用导数求函数的最值步骤:
(1)求f(x)在(a,b)内的极值; (2)将f(x)的各极值与f(a)、f(b)比较得出函数f(x)在[a,b]上的最值。
&用导数的方法求最值特别提醒:
①求函数的最大值和最小值需先确定函数的极大值和极小值,因此,函数极大值和极小值的判别是关键,极值与最值的关系:极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值;②如果仅仅是求最值,还可将上面的办法化简,因为函数fx在[a,b]内的全部极值,只能在f(x)的导数为零的点或导数不存在的点取得(下称这两种点为可疑点),所以只需要将这些可疑点求出来,然后算出f(x)在可疑点处的函数值,与区间端点处的函数值进行比较,就能求得最大值和最小值;③当f(x)为连续函数且在[a,b]上单调时,其最大值、最小值在端点处取得。&生活中的优化问题:
生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题,解决优化问题的方法很多,如:判别式法,均值不等式法,线性规划及利用二次函数的性质等,不少优化问题可以化为求函数最值问题.导数方法是解这类问题的有效工具.
用导数解决生活中的优化问题应当注意的问题:
(1)在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去;(2)在实际问题中,有时会遇到函数在区间内只有一个点使f'(x)=0的情形.如果函数在这点有极大(小)值,那么不与端点比较,也可以知道这就是最大(小)值;(3)在解决实际优化问题时,不仅要注意将问题中涉及的变量关系用函数关系表示,还应确定出函数关系式中自变量的定义区间.
利用导数解决生活中的优化问题:
&(1)运用导数解决实际问题,关键是要建立恰当的数学模型(函数关系、方程或不等式),运用导数的知识与方法去解决,主要是转化为求最值问题,最后反馈到实际问题之中.&(2)利用导数求f(x)在闭区间[a,b]上的最大值和最小值的步骤,&&①求函数y =f(x)在(a,b)上的极值;& ②将函数y=f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.&&(3)定义在开区间(a,b)上的可导函数,如果只有一个极值点,该极值点必为最值点.
发现相似题
与“已知函数f(x)=2ax3+bx2-6x在x=±1处取得极值(1)讨论f(1)和f(-1)是..”考查相似的试题有:
496220769547805405458156270867404437当前位置:
>>>已知函数f(x)=x2+4x,x≥04x-x2,x<0若f(2-a2)>f(a),则实数a的取..
已知函数f(x)=x2+4x,x≥04x-x2,x<0若f(2-a2)>f(a),则实数a的取值范围为______.
题型:填空题难度:中档来源:不详
函数f(x),当x≥0 时,f(x)=x2+4x,由二次函数的性质知,它在[0,+∞)上是增函数,当x<0时,f(x)=4x-x2,由二次函数的性质知,它在(-∞,0)上是增函数,该函数连续,则函数f(x) 是定义在R 上的增函数∵f(2-a2)>f(a),∴2-a2>a解得-2<a<1实数a 的取值范围是(-2,1)故答案为:(-2,1)
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=x2+4x,x≥04x-x2,x<0若f(2-a2)>f(a),则实数a的取..”主要考查你对&&分段函数与抽象函数,二次函数的性质及应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
分段函数与抽象函数二次函数的性质及应用
分段函数:1、分段函数:定义域中各段的x与y的对应法则不同,函数式是分两段或几段给出的; 分段函数是一个函数,定义域、值域都是各段的并集。&抽象函数:
我们把没有给出具体解析式的函数称为抽象函数; 一般形式为y=f(x),或许还附有定义域、值域等,如:y=f(x),(x>0,y>0)。 知识点拨:
1、绝对值函数去掉绝对符号后就是分段函数。 2、分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。 3、分段函数的处理方法:分段函数分段研究。二次函数的定义:
一般地,如果(a,b,c是常数,a≠0),那么y叫做x的二次函数。
二次函数的图像:
是一条关于对称的曲线,这条曲线叫抛物线。抛物线的主要特征:①有开口方向,a表示开口方向;a>0时,抛物线开口向上;a&0时,抛物线开口向下;②有对称轴;③有顶点;④c表示抛物线与y轴的交点坐标:(0,c)。
性质:二次函数y=ax2+bx+c,
①当a>0时,函数f(x)的图象开口向上,在(-∞,-)上是减函数,在[-,+∞)上是增函数; ②当a&0时,函数f(x)的图象开口向下,在(-∞,-)上是增函数,在[-,+∞)是减函数。
二次函数(a,b,c是常数,a≠0)的图像:
&二次函数的解析式:
(1)一般式:(a,b,c是常数,a≠0);(2)顶点式:若二次函数的顶点坐标为(h,k),则其解析式为&;(3)双根式:若相应一元二次方程的两个根为 ,则其解析式为 。二次函数在闭区间上的最值的求法:
(1)二次函数&在区间[p,g]上的最值问题一般情况下,需要分三种情况讨论解决.当a&0时,f(x)在区间[p,g]上的最大值为M,最小值为m,令&.①&② ③ ④特别提醒:在区间内同时讨论最大值和最小值需要分四种情况讨论.
(2)二次函数在区间[m.n]上的最值问题一般地,有以下结论:&特别提醒:max{1,2}=2,即取集合{1,2}中最大的元素。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
发现相似题
与“已知函数f(x)=x2+4x,x≥04x-x2,x<0若f(2-a2)>f(a),则实数a的取..”考查相似的试题有:
776905300341833582857477563682290596当前位置:
>>>已知函数f(x)=1x+clnx的图象与x轴相切于点S(s,0).(Ⅰ)求函数f(x)..
已知函数f(x)=1x+clnx的图象与x轴相切于点S(s,0).(Ⅰ)求函数f(x)的解析式;(Ⅱ)若函数f(x)的图象与过坐标原点O的直线l相切于点T(t,f(t)),且f(t)≠0,证明:1<t<e;(注:e是自然对数的底)(Ⅲ)在(Ⅱ)的条件下,记直线ST的倾斜角为α,试证明:π4<α<5π12.
题型:解答题难度:中档来源:泉州模拟
(Ⅰ)由f(x)=1x+clnx,得f′(x)=-1x2+cx.…(1分)∵函数f(x)=1x+clnx的图象与x轴相切于点S(s,0),∴f′(s)=-1s2+cs=cs-1s2=0,…①且f(s)=1s+clns=0….②…(2分)联立①②得c=e,s=1e.…(3分)∴f(x)=1x+elnx.…(4分)(Ⅱ)证明:f′(x)=-1x2+ex.∵函数f(x)=1x+clnx的图象与直线l相切于点T(t,f(t)),直线l过坐标原点O,∴直线l的方程为:y=(-1t2+et)x,又∵T在直线l上,∴实数t必为方程2t+elnt-e=0….③的解.…(5分)令g(t)=2t+elnt-e,则g′(t)=-2t2+et=et-2t2,解g′(t)>0得t>2e,g′(t)<0得0<t<2e.∴函数y=g(t)在(0,2e]递减,在(2e,+∞)递增.…(7分)∵g(1e)=0,且函数y=g(t)在(0,2e)递减,∴t=1e是方程2t+elnt-e=0在区间(0,2e]内的唯一一个解,又∵f(1e)=0,∴t=1e不合题意,即t>2e.…(8分)∵g(1)=2-e<0,g(e)=2e>0,函数y=g(t)在(2e,+∞)递增,∴必有1<t<e.…(9分)(Ⅲ)证明:∵T(t,f(t)),S(1e,0)∴tanα=kST=f(t)-0t-s=1t+elntt-1e,由③得tanα=1t+elntt-1e=et,…(10分)∵t>0,且0≤α<π,∴0<α<π2.∵1<t<e,∴1<tanα=et<e,…(11分)∵tanπ4=1,tan5π12=tan(π6+π4)=tanπ6+tanπ41-tanπ6tanπ4=2+3>e,…(13分)∴tanπ4<tanα<tan5π12,∵y=tanx在(0,π2)单调递增,∴π4<α<5π12.…(14分)
马上分享给同学
据魔方格专家权威分析,试题“已知函数f(x)=1x+clnx的图象与x轴相切于点S(s,0).(Ⅰ)求函数f(x)..”主要考查你对&&函数的零点与方程根的联系,函数的单调性与导数的关系,函数的极值与导数的关系,简单线性规划问题(用平面区域表示二元一次不等式组)&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
函数的零点与方程根的联系函数的单调性与导数的关系函数的极值与导数的关系简单线性规划问题(用平面区域表示二元一次不等式组)
函数零点的定义:
一般地,如果函数y =f(x)在实数a处的值等于零,即f(a)=o,则a叫做这个函数的零点,有时我们把一个函数的图象与x轴的交点的横坐标,也叫做这个函数的零点。&&&&&&&&&&&&&&& 函数零点具有的性质:
对于任意函数y=(x)只要它的图象是连续不间断的,则有:(1)当它通过零点时(不是二重零点),函数值变号.如函数f(x)=x2-2x -3的图象在零点-1的左边时,函数值取正号,当它通过第一个零点-1时,函数值由正变为负,在通过第二个零点3时,函数值又由负变为正.(2)在相邻两个零点之间所有的函数值保持同号,方程的根与函数的零点的联系:
方程f(x)=0有实根函数y=f(x)的图像与x轴有交点函数y=f(x)有零点 导数和函数的单调性的关系:
(1)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是增函数,f′(x)&0的解集与定义域的交集的对应区间为增区间; (2)若f′(x)&0在(a,b)上恒成立,则f(x)在(a,b)上是减函数,f′(x)&0的解集与定义域的交集的对应区间为减区间。 利用导数求解多项式函数单调性的一般步骤:
①确定f(x)的定义域; ②计算导数f′(x); ③求出f′(x)=0的根; ④用f′(x)=0的根将f(x)的定义域分成若干个区间,列表考察这若干个区间内f′(x)的符号,进而确定f(x)的单调区间:f′(x)&0,则f(x)在对应区间上是增函数,对应区间为增区间;f′(x)&0,则f(x)在对应区间上是减函数,对应区间为减区间。
函数的导数和函数的单调性关系特别提醒:
若在某区间上有有限个点使f′(x)=0,在其余的点恒有f′(x)&0,则f(x)仍为增函数(减函数的情形完全类似).即在区间内f′(x)&0是f(x)在此区间上为增函数的充分条件,而不是必要条件。&极值的定义:
(1)极大值: 一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点; (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。
极值的性质:
(1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小; (2)函数的极值不是唯一的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个; (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。 判别f(x0)是极大、极小值的方法:
若x0满足,且在x0的两侧f(x)的导数异号,则x0是f(x)的极值点, 是极值,并且如果在x0两侧满足“左正右负”,则x0是f(x)的极大值点,f(x0)是极大值;如果在x0两侧满足“左负右正”,则x0是f(x)的极小值点,f(x0)是极小值。
求函数f(x)的极值的步骤:
(1)确定函数的定义区间,求导数f′(x); (2)求方程f′(x)=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。
对函数极值概念的理解:
极值是一个新的概念,它是研究函数在某一很小区域时给出的一个概念,在理解极值概念时要注意以下几点:①按定义,极值点x0是区间[a,b]内部的点,不会是端点a,b(因为在端点不可导).如图②极值是一个局部性概念,只要在一个小领域内成立即可.要注意极值必须在区间内的连续点取得.一个函数在定义域内可以有许多个极小值和极大值,在某一点的极小值也可能大于另一个点的极大值,也就是说极大值与极小值没有必然的大小关系,即极大值不一定比极小值大,极小值不一定比极大值小,如图.&&③若fx)在(a,b)内有极值,那么f(x)在(a,b)内绝不是单调函数,即在区间上单调的函数没有极值.④若函数f(x)在[a,b]上有极值且连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样相邻两个极小值点之间必有一个极大值点,一般地,当函数f(x)在[a,b]上连续且有有限个极值点时,函数f(x)在[a,b]内的极大值点、极小值点是交替出现的,⑤可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,不可导的点也可能是极值点,也可能不是极值点,&&&二元一次不等式表示的平面区域:
二元一次不等式ax+by+c>0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域。不等式ax+by+c<0表示的是另一侧的平面区域。
线性约束条件:
关于x,y的一次不等式或方程组成的不等式组称为x,y的线性约束条件;
线性目标函数:
关于x、y的一次式欲达到最大值或最小值所涉及的变量x、y的解析式,叫做线性目标函数;
线性规划问题:
一般地,求线性目标函数在线性约束条件下的最大值或最小值问题称为线性规划问题。
可行解、可行域和最优解:
满足线性约束条件的解(x,y)称为可行解;由所有可行解组成的集合称为可行域; 使目标函数取得最大值或最小值的可行解叫做线性规划问题的最优解。
用一元一次不等式(组)表示平面区域:
(1)一般地,直线l:ax+by+c=0把直角坐标平面分成了三个部分:①直线l上的点(x,y)的坐标满足ax+by+c=0;②直线l一侧的平面区域内的点(x,y)的坐标满足ax+by+c&0;③直线l另一侧的平面区域内的点(x,y)的坐标满足ax+by+c&0.所以,只需在直线l的某一侧的平面区域内,任取一特殊点(x0,y0),从ax0+by0+c的值的正负,即可判断不等式表示的平面区域,可简称为,特殊点定域”.(2)不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.&线性规划问题求解步骤:
(1)确定目标函数; (2)作可行域; (3)作基准线(z=0时的直线); (4)平移找最优解; (5)求最值。
线性规划求最值线性规划求最值问题:(1)要充分理解目标函数的几何意义,诸如直线的截距、两点间的距离(或平方)、点到直线的距离、过已知两点的直线斜率等.&& (2)求最优解的方法①将目标函数的直线平移,最先通过或最后通过的点为最优解,②利用围成可行域的直线的斜率来判断.若围成可行域的直线,且目标函数的斜率k满足的交点一般为最优解.在求最优解前,令z=0的目的是确定目标函数在可行域的什么位置有可行解,值得注意的是,有些问题中可能要求x,y∈N(即整点),它不一定在边界上.特别地,当表示线性目标函数的直线与可行域的某条边平行()时,其最优解可能有无数个,用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键.可先将题目的量分类,列出表格,理清头绪,然后列出不等式组(方程组),寻求约束条件,并就题目所述找到目标函数.
线性规划的实际应用在线性规划的实际问题中:
主要掌握两种类型:一、给定一定数量的人力、物力资源,问怎样运用这些资源能使完成的任务量最大,收到的效益最大;二、给定一项任务,问怎样统筹安排,能使完成这项任务耗费的人力、物力资源最小.(l)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.(2)整数规划的求解,可以首先放松可行解必须为整数的要求,转化为线性规划求解,若所求得的最优解恰为整数,则该解即为整数规划的最优解;若所求得的最优解不是整数,则视所得非整数解的具体情况增加条件;若这两个子问题的最优解仍不是整数,再把每个问题继续分成两个子问题求解,……,直到求出整数最优解为止,
发现相似题
与“已知函数f(x)=1x+clnx的图象与x轴相切于点S(s,0).(Ⅰ)求函数f(x)..”考查相似的试题有:
877086336686398764844667254865867781}

我要回帖

更多关于 世界七大数学难题 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信