如图1,一个直角三角形形abc高的交点是直角顶点c,此时点c在圆周上

△ABC中,∠C=90°。求证:A,B,C,三点在同一圆上
△ABC中,∠C=90°。求证:A,B,C,三点在同一圆上
证明;作AB中点D,连接CD因为在△ABC中,角C=90度所以△ABC是直角三角形所以AD=BD=CD多以A、B、C在同一圆上
提问者 的感言:不知道说什么,送你一朵小红花吧:)
其他回答 (9)
利用直角三角形斜边上的中线等于斜边的一半 所以斜边的中点到ABC三点距离相等 所以三点共圆
AB的O是AB的中点,连接OC,CO是直角三角形斜边AB的中线,根据直角三角形斜边这线性质有AO=OB=OC∴ABC三个点共圆。
作AC,BC的垂直平分线,相交于O点可知△OAC、△OBC均是等腰三角形所以:OA=OC=OB即:A、B、C三点在圆心为O的圆上!得证。谢谢,望采纳!
解:&∵&∠C=90°
&&& ∴△ABC为直角三角形
&&& ∵直角三角形斜边AB上的中线等于斜边AB的一半
&&&& ∴AD=BD=CD=△ABC所处的圆的半径【D为AB的中点】
&&&& ∴A,B,C,三点在同一圆上
做好学生是不能抄答案的,要遵守规则。自己做更好,让老师信任你,不过个别题问问还是可以的。
如图:连接AB,并以AB为直径作圆(通过尺规作图是可以做到的),此时,以AB为斜边的直角三角形ABC中的直角C一定落在以AB为直径的圆的圆周上。(根据月牙定理得到。)
以上是一种证法,还有另外一种证法,请见下一个补充。
如图,作AB中点D,连接CD,此时,CD是Rt△ABC的斜边中线。根据直角三角形斜边中线定理,CD= 1/2 AB=AD=BD。因为AD=BD=CD,所以A,B,C三点落在同一个圆上,一个以D为圆心,AD(或BD或CD)为半径的圆上。(以下是关于直角三角形斜边中线定理的证明。)
上一部分 忘了上图了,图在这:以下是关于直角三角形斜边中线定理的证明。
取ab的中点d,连接cd,延d做ac的垂线交点为e△ABC和△ADE是相似三角形,ad/ab=1/2,所以ae/ac=1/2,又因为de垂直于ac,所以三角形adc为等腰三角形,所以ad=cd,所以ad=cd=bd所以A,B,C,三点在同一圆上,圆心在d点
相关知识等待您来回答
数学领域专家当前位置:
>>>如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,..
如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D。(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值。
题型:解答题难度:偏难来源:湖南省中考真题
解;(1)由B(3,m)可知,,又△ABC为等腰直角三角形,∴,,所以点A的坐标是(3-m,0);(2)∵∴,则点D的坐标是(0,m-3),又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:,得:,解得 ∴抛物线的解析式为;(3)过点Q作于点M,过点Q作于点N,设点Q的坐标是,则, ∵∴∴ 即,得 ∵ ∴∴即,得又∵∴即为定值8。
马上分享给同学
据魔方格专家权威分析,试题“如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,..”主要考查你对&&求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,相似三角形的性质&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用等腰三角形的性质,等腰三角形的判定相似三角形的性质
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。定义:有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。4.等腰三角形底边上的垂直平分线到两条腰的距离相等。5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。8.等腰三角形中腰的平方等于高的平方加底的一半的平方9.等腰三角形中腰大于高10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。相似三角形性质定理:(1)相似三角形的对应角相等。(2)相似三角形的对应边成比例。(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。(4)相似三角形的周长比等于相似比。(5)相似三角形的面积比等于相似比的平方。(6)相似三角形内切圆、外接圆直径比和周长比都和相似比相同,内切圆、外接圆面积比是相似比的平方(7)若a/b =b/c,即b2=ac,b叫做a,c的比例中项(8)c/d=a/b 等同于ad=bc.(9)不必是在同一平面内的三角形里①相似三角形对应角相等,对应边成比例.②相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比.③相似三角形周长的比等于相似比
定理推论:推论一:顶角或底角相等的两个等腰三角形相似。推论二:腰和底对应成比例的两个等腰三角形相似。推论三:有一个锐角相等的两个直角三角形相似。推论四:直角三角形被斜边上的高分成的两个直角三角形和原三角形都相似。推论五:如果一个三角形的两边和其中一边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。推论六:如果一个三角形的两边和第三边上的中线与另一个三角形的对应部分成比例,那么这两个三角形相似。
发现相似题
与“如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,..”考查相似的试题有:
479323140927146970918521155785211636连接,已知,都是的切线,由切线长定理可证得垂直平分,而(圆周角定理),则;由于是的中点,可证得是的中位线,即是中点,那么中,就是斜边的中线,由此可证得所求的结论;由知:,则所求的比例关系式可转化为,即,那么只需作出与相似的即可,这两个三角形的公共角为,只需作出即可;,即,时,的边与线段相交,那么交点即为所求的点;,即,时,与点重合,点仍在线段上,此种情况也成立;,即,时,的边与线段的延长线相交,与线段没有交点,所以在这种情况下不存在符合条件的点.
证明:连接.由于,是的切线,由切线长定理,得,,垂直平分.又是的直径,..即.又为的中点,为的中位线,,.(分)解:在中,由于,,.当时,有,即时,在线段上存在点满足条件.在内,以为一边,作,使,且交于点,则点即为所求.这是因为:在和中,,,..即.(分)当时,为等边三角形,即,此时,点即为满足条件的点,于是,,仍有.(分)当时,即,;所作的,此时点在的延长线上,故线段上不存在满足条件的点.(分)
此题主要考查了直角三角形的性质,切线长定理,三角形中位线定理及相似三角形的判定和性质;题一定要注意"线段上是否存在点的条件,以免造成多解.
3939@@3@@@@切线长定理@@@@@@260@@Math@@Junior@@$260@@2@@@@圆@@@@@@52@@Math@@Junior@@$52@@1@@@@图形的性质@@@@@@7@@Math@@Junior@@$7@@0@@@@初中数学@@@@@@-1@@Math@@Junior@@$3899@@3@@@@三角形中位线定理@@@@@@258@@Math@@Junior@@$258@@2@@@@三角形@@@@@@52@@Math@@Junior@@$52@@1@@@@图形的性质@@@@@@7@@Math@@Junior@@$7@@0@@@@初中数学@@@@@@-1@@Math@@Junior@@$3996@@3@@@@相似三角形的判定与性质@@@@@@266@@Math@@Junior@@$266@@2@@@@图形的相似@@@@@@53@@Math@@Junior@@$53@@1@@@@图形的变化@@@@@@7@@Math@@Junior@@$7@@0@@@@初中数学@@@@@@-1@@Math@@Junior@@
@@52@@7##@@52@@7##@@53@@7
第一大题,第14小题
第一大题,第10小题
第一大题,第15小题
第三大题,第7小题
求解答 学习搜索引擎 | 已知:以直角三角形ABC的直角边AB为直径作圆O,与斜边AC交于点D,过点D作圆O的切线交BC边于点E.(1)如图,求证:EB=EC=ED;(2)试问在线段DC上是否存在点F,满足B{{C}^{2}}=4DFoDC.若存在,作出点F,并予以证明;若不存在,请说明理由.;(2)如图1,△ABC中,AC=1,∠B=30°,∠A=α,请利用此图证明(1)中的结论;(3)两块分别含45°和30°的直角三角板如图2方式放置在同一平面内,BD=,求S△ADC.
点击展开完整题目
科目:初中数学
如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为4.若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=a,CD=b.(1)请在图中找出两对相似而不全等的三角形,并选取其中一对进行证明;(2)求a?b的值;(3)在旋转过程中,当△AFG旋转到如图2的位置时,AG与BC交于点E,AF的延长线与CB的延长线交于点D,那么a?b的值是否发生了变化?为什么?
点击展开完整题目
科目:初中数学
(1)观察与猜想:已知当0°<α<60°时,下列关系式有且只有一个正确,正确的是C(填代号)A.2sin(30°+α)=sinα+&&&B.2sin(30°+α)=2sinα+C.2sin(30°+α)=sinα+cosα.(2)探究与证明:如图1,△ABC中,∠A=α,∠B=30°,AC=1,请利用图1证明(1)中你猜想的结论;(3)应用新知识解决问题:两块分别含有45°和30°的直角三角板如图2方式摆放在同一平面内,BD=8,求S△ABC.
点击展开完整题目
科目:初中数学
如图1,在同一平面内,四条线AB、BC、CD、DA首尾顺次相接,AD、BC相交于点O,AM、CN分别是∠BAD和∠BCD的平分线,∠B=α,∠D=β.(1)如图2,AM、CN相交于点P.①当α=β时,判断∠APC与α的大小关系,并说明理由.②当α>β时,请直接写出∠APC与α,β的数量关系.(2)是否存在AM∥CN的情况?若存在,请判断并说明α,β的数量关系;若不存在,请说明理由.
点击展开完整题目您所在位置: &
&nbsp&&nbsp&nbsp&&nbsp
2013年中考攻略专题8:几何最值问题解法探讨(含答案).doc68页
本文档一共被下载:
次 ,您可免费全文在线阅读后下载本文档
文档加载中...广告还剩秒
需要金币:60 &&
你可能关注的文档:
··········
··········
【2013年中考攻略】专题8:几何最值问题解法探讨
在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。
解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。下面通过近年全国各地中考的实例探讨其解法。
应用两点间线段最短的公理(含应用三角形的三边关系)求最值:典型例题:例1. (2012山东济南3分)如图,∠MON 90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB 2,BC 1,运动过程中,点D到点O的最大距离为【
A.   B.   C.5   D.
【答案】A。
【考点】矩形的性质,直角三角形斜边上的中线性质,三角形三边关系,勾股定理。
【分析】如图,取AB的中点E,连接OE、DE、OD,
∵OD≤OE+DE,
∴当O、D、E三点共线时,点D到点O的距离最大,
此时,∵AB 2,BC 1,∴OE AE AB 1。
∴OD的最大值为:。故选A。
例2.(2012湖北鄂州3分)在锐角三角形ABC中,BC ,∠ABC 45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是
【答案】4。
【考点】最短路线问题,全等三角形的判定和性质,三角形三边关系,垂直线段的性质,锐角三角函数定义,特殊角的三角函数值。
【分析】如图,在BA上截取BE BN,连接EM。
∵∠ABC的平分线交AC于点D,∴∠EBM ∠NBM。
在△AME与△AMN中,∵BE BN ,∠EBM ∠NBM,
正在加载中,请稍后...}

我要回帖

更多关于 直角三角形边长公式 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信