做动量方程实验中,通过细大前庭导水管综合症分流,其岀射角度为什么需垂直v1x

流体热工实验报告_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
流体热工实验报告
西​南​石​油​大​学​专​用
阅读已结束,如果下载本文需要使用
想免费下载本文?
下载文档到电脑,查找使用更方便
还剩39页未读,继续阅读
你可能喜欢流体力学实验_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
流体力学实验
阅读已结束,如果下载本文需要使用
想免费下载本文?
下载文档到电脑,查找使用更方便
还剩7页未读,继续阅读
你可能喜欢02 能量与动量方程74-第3页
上亿文档资料,等你来发现
02 能量与动量方程74-3
的抗冲平板9组成;泄水窄槽c;(a)(b);图3.3活塞构造与受力分析;(2)工作原理;由于在平衡过程中,活塞需要做轴向移动,为此平板上;3.基本操作方法;(1)测压管定位;(2)恒压水箱水位调节;节恒压水箱5水位,管嘴的作用水头改变;(3)活塞形心处水深hc测量;(4)管嘴作用水头测量;(5)测量流量;恒定总流动量方程为;???;F??qV(?2v2??v
的抗冲平板9组成。分部件示意图如图3.3(a)所示。活塞中心设有一细导水管a,进口端位于平板中心,出口端伸出活塞头部,出口方向与轴向垂直。在平板上设有翼片b,活塞套上设有泄水窄槽c。泄水窄槽c(a)
活塞构造与受力分析(2)工作原理。为了精确测量动量修正因数?,本实验装置应用了自动控制的反馈原理和动摩擦减阻技术。工作时,活塞置于活塞套内,沿轴向可以自由滑移。在射流冲击力作用下,水流经导水管a向测压管8加水。当射流冲击力大于测压管内水柱对活塞的压力时,活塞内移,窄槽c关小,水流外溢减少,使测压管8水位升高,活塞所受的水压力增大。反之,活塞外移,窄槽开大,水流外溢增多,测压管8水位降低,水压力减小。在恒定射流冲击下,经短时段的自动调整后,活塞处在半进半出、窄槽部分开启的位置上,过a流进测压管的水量和过c外溢的水量相等,测压管中的液位达到稳定。此时,射流对平板的冲击力和测压管中水柱对活塞的压力处于平衡状态,如图3.3(b)所示。活塞形心处水深hc可由测压管8的标尺测得,由此可求得活塞的水压力,此力即为射流冲击平板的动量力F。由于在平衡过程中,活塞需要做轴向移动,为此平板上设有翼片b。翼片在水流冲击下带动活塞旋转,因而克服了活塞在沿轴向滑移时的静摩擦力,提高了测力机构的灵敏度。本装置还采用了双平板狭缝出流方式,精确地引导射流的出流方向垂直于来流方向,以确保v2x=0。3.基本操作方法(1)测压管定位。待恒压水箱满顶溢流后,松开测压管固定螺丝,调整方位,要求测压管垂直、螺丝对准十字中心,使活塞转动松快。然后旋转螺丝固定好。(2)恒压水箱水位调节。旋转水位调节阀4,可打开不同高度上的溢水孔盖,调节恒压水箱5水位,管嘴的作用水头改变。调节调速器,使溢流量适中,待水头稳定后,即可进行实验。(3)活塞形心处水深hc测量。标尺的零点已固定在活塞园心的高程上。当测压管内液面稳定后,记下测压管内液面的标尺读数,即为作用在活塞形心处的水深hc值。(4)管嘴作用水头测量。管嘴作用水头是指水箱液面至管嘴中心的垂直深度。在水箱的侧面上刻有管嘴中心线,用直尺测读水箱液面及中心线的值,其差值即为管嘴作用水头值。(5)测量流量。用称重法测流量,流量对实验精度影响很大,为保证实验精度,每次测流量时间要求大于15秒,且需重复测三次再取均值。 3.3.3
实验原理恒定总流动量方程为???F??qV(?2v2??v 1)1取控制体如图3.3(b),因滑动摩擦阻力水平分力 Ff
& 0.5%Fx,可忽略不计,故x方向的动量方程可化为Fx??pcA???ghcπ2D??qV(0??1v1x) 4 即
?1?qVv1x?π?ghcD2?0 4式中:hc―― 作用在活塞形心处的水深;D ―― 活塞的直径;qV―― 射流的流量;v1x―― 射流的速度;?1 ―― 动量修正因数。实验中,在平衡状态下,只要测得流量qV和活塞形心水深hc,由给定的管嘴直径d和活塞直径D,代入上式,便可验证动量方程,并测定射流的动量修正因数 ?1值。3.3.4
实验内容与方法1.定性分析实验(1)观察、分析本实验装置中测力机构的结构创新点。测射流冲击力的方法很多,装置各不相同,相比之下,本装置的测力机构测量方法简便,精度最高。本装置曾获国家发明专利,主要创新点有:1) 将射流冲击力转变为活塞所受的静水总压力,用测压管进行测量。 2) 用双平板狭缝方式精确导流,确保v2x=0。3) 采用动摩擦减阻减少活塞轴向位移的摩擦阻力。带翼片的平板在射流作用下获得力矩,使活塞在旋转中作轴向位移,到达平衡位置。活塞采用石墨润滑。4) 利用导水管a和窄槽c的自动反馈功能,自动调节受力平衡状态下的测压管水位。5) 利用大口径测压管内设置阻尼孔板的方法,减小测压管液位的振荡。动一动:在射流作用下的平衡状态,将活塞向里推进,实验可见,窄槽c出水量
(增大、减小、不变),而当去除施加于活塞的推力后,活塞将沿轴向
移动(向外、向内),自动回复到活塞的平衡位置。(2) 测定本实验装置的灵敏度。为验证本装置的灵敏度, 只要在实验中的恒定流受力平衡状态下, 人为地增、减测压管中的液位高度,可发现即使改变量不足总液柱高度的 5‰(约0.5~1mm),活塞在旋转下亦能有效地克服动摩擦力而作轴向位移,开大或减小窄槽c,使过高的水位降低或过低的水位提高,恢复到原来的平衡状态。这表明该装置的灵敏度高达0.5%,亦即活塞轴向动摩擦力不足总动量力的5‰。想一想:仪器的灵敏度即使低于1%,仪器的测量精度也可高于1%。(对、错)(3) 验证v2x? 0对Fx 的影响。取下平板活塞9,使水流冲击到活塞套内,便可呈现出回流与x方向的夹角? &90?(即v2x ? 0)的水力现象[参图3.3.3(a)]。调整好位置,使反射水流的回射角度一致。以某动量实验台为例,某次实验测得作用于活塞套园心处的水深hc ?=292mm,管嘴作用水头H0=293.5 mm,而相应水流条件下,在取下带翼轮的活塞前,v2x=0,hc=196mm。表明v2x若不为零,对动量力影响甚大。因为v 2x不为零,则动量方程变为[参图3.3.3(b)]测压管8p (a)
(b)图3.3.3
射流对活塞套的冲击与受力分析π??ghc 'D2??qV(?2v2x??1v1x)???qV[?1v1x??2v2cos(180???)]4就是说hc ?随 v2 及 ? 递增。故实验中hc ?& hc。答一答:活塞套圆心与管嘴中心处于同一水平面上,当反射角?&90?时,活塞套圆心处的水深hc?能大于管嘴作用水头H0吗?为什么? 2. 定量分析实验――恒定总流动量方程验证与射流动量修正因数测定实验 实验方法与步骤:参照3.3中第3点的基本操作方法,分别测量高、中、低三个恒定水位下的流量、活塞作用水头等有关实验参数,实验数据处理与分析参考3.3.5。3.3.5
数据处理及成果要求1.记录有关信息及实验常数实验设备名称:__________________
实验台号:_________ 实 验 者:______________________
实验日期:_________ 管嘴内径d=____?10-2m
活塞直径D=____?10-2m 2.实验数据记录及计算结果表3.3.1
测量记录及计算表3.成果要求(1)回答定性分析实验中的有关问题。 (2)测定管嘴射流的动量修正因数?。(3)取某一流量,绘出控制体图,阐明分析计算的过程。 3.3.6
分析思考题1.实测?与公认值(?=1.02~1.05)符合与否?如不符合,试分析原因。 2.带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量方程有无影响?为什么?3.如图3.3,通过细导水管a的分流,其出流角度为什么需使之垂直于v1x? 3.3.7
注意事项若活塞转动不灵活,会影响实验精度,需在活塞与活塞套的接触面上涂抹4B铅笔芯。包含各类专业文献、幼儿教育、小学教育、生活休闲娱乐、中学教育、应用写作文书、各类资格考试、02 能量与动量方程74等内容。 
 建立动量守恒方程求解. 三、功和能 1.中学物理中常见的能量 1 1 动能 Ek= ...(mgh+fh)=0- mv02 2 v 02 解得:h= f 2g(1+ ) mg 设物块返回至原...  2、能应用恒定总流的连续方程、能量方程和动量方程进行水力计算。 【内容提要和...7.860 × 10 5 + 0.0233 × 10 5 = 3.24 × 10 5 N 根据三通管...  建立动量守恒方程求解. 三、功和能 1.中学物理中常见的能量 1 1 动能 Ek= ...mg+f a1= m v02 v02 故物块上升的最大高度 h= = 2a1 f 2g(1+ ) ...  专题二 动量和能量_高三理化生_理化生_高中教育_教育...⑥mv02/2=hν-W:光电子的最大初动能等于入射...图景,抽象出物理模型,选择物理规律,建立方程 进行...  建立动量守恒方程求解. 三、功和能 1.中学物理中常见的能量 1 1 动能 Ek= ...光子的能量 hν=W+ mv02. 2 (14)在原子物理中,原子辐射光子的能量 hν=...  建立动量守恒方程求解. 三、功和能 1.中学物理中常见的能量 1 2 1 2 动能...(mgh+fh)=0- mv0 2 解得:h= v02 2g(1+ ) f mg 设物块返回至原...  “逼近高考―选择题总结性训练” 动量与能量一、考点及说明高频考点 1 高频考点 2 功、功率、动能定理、功能关系 动量、碰撞与动量守恒、反冲 二、类型、情景、...  高中物理动量能量典型试题_理化生_高中教育_教育专区...? ( M ? m)V02 2 对车尾,脱钩后用动能定理...mv 10 ? Mv 20 2 2 2 带入数据联立方程,解得...  动量和能量的综合应用_理化生_高中教育_教育专区。广东高考理综物理计算题解题策略...当带电粒子在复合场中做匀速圆周运动时往往应用牛顿第二定律和平衡条件列方程...公考,家教,作文,写作,答案,中考,高考,语文,英语,培训,教师,律师,秘书,文秘,作业,辅导
&>&&>&工程流体力学及水力学实验报告及分析讨论
工程流体力学及水力学实验报告及分析讨论_16100字
工程流体力学及水力学实验报告及分析讨论
实验一 流体静力学实验
在重力作用下不可压缩流体静力学基本方程
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
式中: z被测点在基准面的相对位置高度;
p被测点的静水压强,用相对压强表示,以下同;
p0水箱中液面的表面压强;
γ液体容重;
h被测点的液体深度。
另对装有水油(图1.2及图1.3)U型测管,应用等压面可得油的比重S0有下列关系:
<p class="
href="http://retype.wenku.bd
据此可用仪器(不用另外尺)直接测得S0。
实验分析与讨论
1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。
2.当PB&0时,试根据记录数据,确定水箱内的真空区域。
<p class="
href="http://retype.wenku.bd
,相应容器的真空区域包括以下三部分:
(1)过测压管2液面作一水平面,由等压面原理知,相对测压管2及水箱内的水体而言,该水平面为等压面,均为大气压强,故该平面以上由密封的水、气所占的空间区域,均为真空区域。
(2)同理,过箱顶小水杯的液面作一水平面,测压管4中,该平面以上的水体亦为真空区域。
(3)在测压管5中,自水面向下深度某一段水柱亦为真空区。这段高度与测压管2液面低于水箱液面的高度相等,亦与测压管4液面高于小水杯液面高度相等。
3.若再备一根直尺,试采用另外最简便的方法测定γ0。
最简单的方法,是用直尺分别测量水箱内通大气情况下,管5油水界面至水面和油水界面至油面的垂直高度h和h0,由式,从而求得γ0。
4.如测压管太细,对测压管液面的读数将有何影响?
设被测液体为水,测压管太细,测压管液面因毛细现象而升高,造成测量误差,毛细高度由下式计算
<p class="
href="http://retype.wenku.bd
式中,为表面张力系数;为液体的容量;d为测压管的内径;h为毛细升高。常温(t=20℃)的水,=7.28dyn/mm,=0.98dyn/mm。水与玻璃的浸润角很小,可认为cosθ=1.0
<p class="
href="http://retype.wenku.bd
。于是有(h、d单 位 为mm)
一般来说,当玻璃测压管的内径大于10mm时,毛细影响可略而不计。另外,当水质不洁时,减小,毛细高度亦较净水小;当采用有机玻璃作测压管时,浸润角较大,其h较普通玻璃管小。
如果用同一根测压管测量液体相对压差值,则毛细现象无任何影响。因为测量高、低压强时均有毛细现象,但在计算压差时,互相抵消了。
5.过C点作一水平面,相对管1、2、5及水箱中液体而言,这个水平面是不是等压面?哪一部分液体是同一等压面?
不全是等压面,它仅相对管1、2及水箱中的液体而言,这个水平面才是等压面。因为只有全部具备下列5个条件的平面才是等压面:(1)重力液体;(2)静止;(3)连通;(4)连通介质为同一均质液体;
(5)同一水平面。而管5与水箱之间不符合条件(4),因此,相对管5和水箱中的液体而言,该水平面不是等压面。
6.用图1.1装置能演示变液位下的恒定流实验吗?
关闭各通气阀门,开启底阀,放水片刻,可看到有空气由c进入水箱。这时阀门的出流就是变液位下的恒定流。因为由观察可知,测压管1的液面始终与c点同高,表明作用于底阀上的总水头不变,故为恒定流动。这是由于液位的降低与空气补充使箱体表面真空度的减小处于平衡状态。医学上的点滴注射就是此原理应用的一例,医学上称之为马利奥特容器的变液位下恒定流。
7.该仪器在加气增压后,水箱液面将下降而测压管液面将升高H,实验时,若以P0=0时的水箱液面作为测
量基准,试分析加气增压后,实际压强(H+δ)与视在压强H的相对误差值。本仪器测压管内径为0.8cm,箱体内径为20cm。
加压后,水箱液面比基准面下降了,而同时测压管1、2的液面各比基准面升高了H,由水量平衡原理有
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
d=0.8cm, D=20cm,
于是相对误差有
<p class="
href="http://retype.wenku.bd
因而可略去不计。
其实,对单根测压管的容器若有D/d10或对两根测压管的容器D/d7时,便可使0.01。
实验二 不可压缩流体恒定流能量方程(伯诺利方程)实验
在实验管路中沿管内水流方向取n个过断面。可以列出进口断面(1)至另一断面(i)的能量方程式(i=2,3,,,,,,n)
<p class="
href="http://retype.wenku.bd
取a1=a2=,,an=1,选好基准面,从已设置的各断面的测压管中读出值,测出通过管路的流量,即可计算出断面平均流速v及,从而即可得到各断面测管水头和总水头。
成果分析及讨论
1.测压管水头线和总水头线的变化趋势有何不同?为什么?
测压管水头线(P-P)沿程可升可降,线坡JP可正可负。而总水头线(E-E)沿程只降不升,线坡J恒为正,即J&0。这是因为水在流动过程中,依据一定边界条件,动能和势能可相互转换。测点5至测点7,管收缩,部分势能转换成动能,测压管水头线降低,Jp&0。测点7至测点9,管渐扩,部分动能又转换成势能,测压管水头线升高,JP&0。而据能量方程E1=E2+hw1-2, hw1-2为损失能量,是不可逆的,即恒有hw1-2&0,故E2恒小于E1,(E-E)线不可能回升。(E-E) 线下降的坡度越大,即J越大,表明单位流程上的水头损失越大,如图2.3的渐扩段和阀门等处,表明有较大的局部水头损失存在。
2.流量增加,测压管水头线有何变化?为什么?
有 如 下 二 个 变 化 :
(1)流量增加,测压管水头线(P-P)总降落趋势更显著。这是因为测压管水
<p class="
href="http://retype.wenku.bd
,任一断面起始时的总水头E及管道过流断面面积A为定值时,Q增大,
<p class="
href="http://retype.wenku.bd
则必减小。而且随流量的增加阻力损失亦增大,管道任一过水断面上的总水头E相应减小,故的减小更加显著。
(2)测压管水头线(P-P)的起落变化更为显著。
因为对于两个不同直径的相应过水断面有
<p class="
href="http://retype.wenku.bd
式中为两个断面之间的损失系数。管中水流为紊流时,接近于常数,又管道断面为定值,故Q增大,H亦增大,(P-P)线的起落变化就更为显著。
3.测点2、3和测点10、11的测压管读数分别说明了什么问题?
测点2、3位于均匀流断面(图2.2),测点高差0.7cm,HP=均为37.1cm(偶有毛细影响相差0.1mm),表明均匀流同断面上,其动水压强按静水压强规律分布。测点10、11在弯管的急变流断面上,测压管水
头差为7.3cm,表明急变流断面上离心惯性力对测压管水头影响很大。由于能量方程推导时的限制条件之一是“质量力只有重力”,而在急变流断面上其质量力,除重力外,尚有离心惯性力,故急变流断面不能选作能量方程的计算断面。在绘制总水头线时,测点10、11应舍弃。
4.试问避免喉管(测点7)处形成真空有哪几种技术措施?分析改变作用水头(如抬高或降低水箱的水位)对喉管压强的影响情况。
下述几点措施有利于避免喉管(测点7)处真空的形成:
(1)减小流量,(2)增大喉管管径,(3)降低相应管线的安装高程,(4)改变水箱中的液位高度。
显然(1)、(2)、(3)都有利于阻止喉管真空的出现,尤其(3)更具有工程实用意义。因为若管系落差不变,单单降低管线位置往往就可完全避免真空。例如可在水箱出口接一下垂90弯管,后接水平段,将喉管的高程降至基准高程0—0,比位能降至零,比压能p/γ得以增大(Z),从而可能避免点7处的真空。至于措施(4)其增压效果是有条件的,现分析如下:
当作用水头增大h时,测点7断面上值可用能量方程求得。
取基准面及计算断面1、2、3,计算点选在管轴线上(以下水柱单位均为cm)。于是由断面1、2的能量方程(取a2=a3=1)有
<p class="
href="http://retype.wenku.bd
因hw1-2可表示成此处c1.2是管段1-2总水头损失系数,式中e、s分别为进口和渐缩局部损失系数。 又由连续性方程有
<p class="
href="http://retype.wenku.bd
故式(1)可变为
<p class="
href="http://retype.wenku.bd
(2) 式中可由断面1、3能量方程求得,即
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
代入式( 2)有(Z2+P2/γ)随h递增还是递减,可由(Z2+P2/γ)加以判别。因
<p class="
href="http://retype.wenku.bd
若1-[(d3/d2)4+c1.2]/(1+c1.3)&0,则断面2上的(Z+p/γ) 随h同步递增。反之,则递减。文丘里实验为递减情况,可供空化管设计参考。
在实验报告解答中,d3/d2=1.37/1,Z1=50,Z3=-10,而当h=0时,实验的(Z2+P2/γ)=6
<p class="
href="http://retype.wenku.bd
,将各值代入式(2)、(3),可得该管道阻力系数分别为c1.2=1.5,c1.3=5.37。
再将其代入式(5)得
<p class="
href="http://retype.wenku.bd
表明本实验管道喉管的测压管水头随水箱水位同步升高。但因(Z2+P2/γ)接近于零,故水箱水位的升高对提高喉管的压强(减小负压)效果不显著。变水头实验可证明该结论正确。
5.由毕托管测量显示的总水头线与实测绘制的总水头线一般都有差异,试分析其原因。
与毕托管相连通的测压管有1、6、8、12、14、16和18管,称总压管。总压管液面的连续即为毕托管测量显示的总水头线,其中包含点流速水头。
<p class="
href="http://retype.wenku.bd
而实际测绘的总水头是以实测的值加断面平均流速水头v2/2g绘制的。据经验资料,对于园管紊流,只有在离管壁约0.12d的位置,其点流速方能代表该断面的平均流速。由于本实验毕托管的探头通常布设在管轴附近,其点流速水头大于断面平均流速水头,所以由毕托管测量显示的总水头线,一般比实际测绘的总水线偏高。
因此,本实验由1、6、8、12、14、16和18管所显示的总水头线一般仅供定性分析与讨论,只有按实验原理与方法测绘总水头线才更准确。
实验三 不可压缩流体恒定流动量定律实验
恒定总流动量方程为
<p class="
href="http://retype.wenku.bd
取脱离体,因滑动摩擦阻力水平分离
<p class="
href="http://retype.wenku.bd
hc——作用在活塞形心处的水深;
D——活塞的直径;
Q——射流流量;
V1x——射流的速度;
β1——动量修正系数。
实验中,在平衡状态下,只要测得Q流量和活塞形心水深hc,由给定的管嘴直径d和活塞直径D,代入上式,便可验证动量方程,并率定射流的动量修正系数β1值。其中,测压管的标尺零点已固定在活塞的园心处,因此液面标尺读数,即为作用在活塞园心处的水深。 ,可忽略不计,故x方向的动量方程化为
<p class="
href="http://retype.wenku.bd
实验分析与讨论
1、实测β与公认值(β=1.02~1.05)符合与否?如不符合,试分析原因。
实测β=1.035与公认值符合良好。(如不符合,其最大可能原因之一是翼轮不转所致。为排除此故障,可用4B铅笔芯涂抹活塞及活塞套表面。)
2、带翼片的平板在射流作用下获得力矩,这对分析射流冲击无翼片的平板沿x方向的动量力有无影响?为什么?
因带翼片的平板垂直于x轴,作用在轴心上的力矩T,是由射流冲击平板是,沿yz平面通过翼片造成动量矩的差所致。即
<p class="
href="http://retype.wenku.bd
Q——射流的流量;
Vyz1——入流速度在yz平面上的分速;
Vyz2——出流速度在yz平面上的分速;
α1——入流速度与圆周切线方向的夹角,接近90°;
α2——出流速度与圆周切线方向的夹角;
r1,2——分别为内、外圆半径。
该式表明力矩T恒与x方向垂直,动量矩仅与yz平面上的流速分量有关。也就是说平板上附加翼片后,尽管在射流作用下可获得力矩,但并不会产生x方向的附加力,也不会影响x方向的流速分量。所以x方向的动量方程与平板上设不设翼片无关。
3、通过细导水管的分流,其出流角度与V2相同,试问对以上受力分析有无影响?
当计及该分流影响时,动量方程为
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
该式表明只要出流角度与V1垂直,则x方向的动量方程与设置导水管与否无关。
<p class="
href="http://retype.wenku.bd
、滑动摩擦力
<p class="
href="http://retype.wenku.bd
为什么可以忽略不记?试用实验来分析验证的大小,记录观察结果。(提示:平衡时,向测压管内加入或取出1mm左右深的水,观察活塞及液位的变化)
因滑动摩擦力&5墸,故可忽略而不计。
如第三次实验,此时hc=19.6cm,当向测压管内注入1mm左右深的水时,活塞所受的静压力增大,约为射流冲击力的5。假如活动摩擦力大于此值,则活塞不会作轴向移动,亦即hc变为9.7cm左右,并保持不变,然而实际上,此时活塞很敏感地作左右移动,自动调整测压管水位直至hc仍恢复到19.6cm为止。这表明活塞和活塞套之间的轴向动摩擦力几乎为零,故可不予考虑。
5、V2x若不为零,会对实验结果带来什么影响?试结合实验步骤7的结果予以说明。
按实验步骤7取下带翼轮的活塞,使射流直接冲击到活塞套内,便可呈现出回流与x方向的夹角α大于90°(其V2x不为零)的水力现象。本实验测得135°,作用于活塞套圆心处的水深hc’=29.2cm,管嘴作用水头H0=29.45cm。而相应水流条件下,在取下带翼轮的活塞前,V2x=0,hc=19.6cm。表明V2x若不为零,对动量立影响甚大。因为V2x不为零,则动量方程变为
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
就是说hc’随V2及α递增。故实验中hc’& hc。
实际上,hc’随V2及α的变化又受总能头的约束,这是因为由能量方程得
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
从式(2)知,能量转换的损失较小时,
实验四 毕托管测速实验
<p class="
href="http://retype.wenku.bd
式中:u-毕托管测点处的点流速;
c-毕托管的校正系数;
<p class="
href="http://retype.wenku.bd
-毕托管全压水头与静水压头差。
<p class="
href="http://retype.wenku.bd
联解上两式可得
<p class="
href="http://retype.wenku.bd
式中:u -测点处流速,由毕托管测定;
<p class="
href="http://retype.wenku.bd
- 测点流速系数;
ΔH-管嘴的作用水头。
实验分析与讨论
1.利用测压管测量点压强时,为什么要排气?怎样检验排净与否?
毕托管、测压管及其连通管只有充满被测液体,即满足连续条件,才有可能测得真值,否则如果其中夹有气柱,就会使测压失真,从而造成误差。误差值与气柱高度和其位置有关。对于非堵塞性气泡,虽不产生误差,但若不排除,实验过程中很可能变成堵塞性气柱而影响量测精度。检验的方法是毕托管置于静水中,检查分别与毕托管全压孔及静压孔相连通的两根测压管液面是否齐平。如果气体已排净,不管怎样抖动塑料连通管,两测管液面恒齐平。
2.毕托管的动压头h和管嘴上、下游水位差H之间的大关系怎样?为什么?
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
一般毕托管校正系数c=11"(与仪器制作精度有关)。喇叭型进口的管嘴出流,其中心点的点流速系数=0.9961"。所以Δh&ΔH。
本实验Δh=21.1cm,ΔH=21.3cm,c=1.000。
3.所测的流速系数说明了什么?
若管嘴出流的作用水头为H,流量为Q,管嘴的过水断面积为A,相对管嘴平均流速v,则有
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
称作管嘴流速系数。
若相对点流速而言,由管嘴出流的某流线的能量方程,可得
<p class="
href="http://retype.wenku.bd
式中:为流管在某一流段上的损失系数;为点流速系数。
<p class="
href="http://retype.wenku.bd
本实验在管嘴淹没出流的轴心处测得=0.995,表明管嘴轴心处的水流由势能转换为动能的过程中有能量损失,但甚微。
4.据激光测速仪检测,距孔口2-3cm轴心处,其点流速系数为0.996,试问本实验的毕托管精度如何?如何率定毕托管的修正系数c?
若以激光测速仪测得的流速为真值u,则有
<p class="
href="http://retype.wenku.bd
而毕托管测得的该点流速为203.46cm/s,则ε=0.2‰
欲率定毕托管的修正系数,则可令
<p class="
href="http://retype.wenku.bd
5.普朗特毕托管的测速范围为0.2-2m/s,轴向安装偏差要求不应大于10度,试说明原因。(低流速可用倾斜压差计)。
(1)施测流速过大过小都会引起较大的实测误差,当流速u小于0.2m/s时,毕托管测得的压差Δh亦有
<p class="
href="http://retype.wenku.bd
若用30倾斜压差计测量此压差值,因倾斜压差计的读数值差Δh为
<p class="
href="http://retype.wenku.bd
那么当有0.5mm的判读误差时,流速的相对误差可达6%。而当流速大于2m/s时,由于水流流经毕托管头部时会出现局部分离现象,从而使静压孔测得的压强偏低而造成误差。
(2)同样,若毕托管安装偏差角(α)过大,亦会引起较大的误差。因毕托管测得的流速u是实际流速u在其轴向的分速ucosα,则相应所测流速误差为
<p class="
href="http://retype.wenku.bd
α若&10,则
6.为什么在光、声、电技术高度发展的今天,仍然常用毕托管这一传统的流体测速仪器?
毕托管测速原理是能量守恒定律,容易理解。而毕托管经长期应用,不断改进,已十分完善 。具有结构简单,使用方便,测量精度高,稳定性好等优点。因而被广泛应用于液、气流的测量(其测量气体的流速可达60m/s)。光、声、电的测速技术及其相关仪器,虽具有瞬时性,灵敏、精度高以及自动化记录等诸多优点,有些优点毕托管是无法达到的。但往往因其机构复杂,使用约束条件多及价格昂贵等因素,从而在应用上受到限制。尤其是传感器与电器在信号接收与放大处理过程中,有否失真,或者随使用时间的长短,环境温度的改变是否飘移等,难以直观判断。致使可靠度难以把握,因而所有光、声、电测速仪器,包括激光测速仪都不得不用专门装置定期率定(有时是利用毕托管作率定)。可以认为至今毕托管测速仍然是最可信,最经济可靠而简便的测速方法。
实验五 雷诺实验
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
实验分析与讨论
⒈流态判据为何采用无量纲参数,而不采用临界流速?
雷诺在1883年以前的实验中,发现园管流动存在两种流态——层流和紊流,并且存在着层流转化为紊流的临界流速V’,V’与流体的粘性ν及园管的直径d有关,即
<p class="
href="http://retype.wenku.bd
因此从广义上看,V’不能作为流态转变的判据。
为了判别流态,雷诺对不同管径、不同粘性液体作了大量的实验,得出了用无量纲参数(vd/ν)作为管流流态的判据。他不但深刻揭示了流态转变的规律,而且还为后人用无量纲化的方法进行实验研究树立了典范。用无量纲分析的雷列法可得出与雷诺数结果相同的无量纲数。
可以认为式(1)的函数关系能用指数的乘积来表示。即
<p class="
href="http://retype.wenku.bd
其中K为某一无量纲系数。
式(2)的量纲关系为
<p class="
href="http://retype.wenku.bd
从量纲和谐原理,得
L:2α1+α2=1
T:-α1=-1
联立求解得α1=1,α2=-1
将上述结果,代入式(2),得
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
雷诺实验完成了K值的测定,以及是否为常数的验证。结果得到K=2320。于是,无量纲数vd/ν便成了适应于任何管径,任何牛顿流体的流态转变的判据。由于雷诺的奉献,vd/ν定命为雷诺数。
随着量纲分析理论的完善,利用量纲分析得出无量纲参数,研究多个物理量间的关系,成了现今实验研究的重要手段之一。
⒉为何认为上临界雷诺数无实际意义,而采用下临界雷诺数作为层流与紊流的判据?实测下临界雷诺数为多少?
根据实验测定,上临界雷诺数实测值在范围内,与操作快慢,水箱的紊动度,外界干扰等密切相关。有关学者做了大量实验,有的得12000,有的得20000,有的甚至得40000。实际水流中,干扰总是存在的,故上临界雷诺数为不定值,无实际意义。只有下临界雷诺数才可以作为判别流态的标准。凡水流的雷诺数小于下临界雷诺数者必为层流。一般实测下临界雷诺数为2100左右。
⒊雷诺实验得出的圆管流动下临界雷诺数2320,而目前一般教科书中介绍采用的下临界雷诺数是2000,原因何在?
下临界雷诺数也并非与干扰绝对无关。雷诺实验是在环境的干扰极小,实验前水箱中的水体经长时间的稳定情况下,经反复多次细心量测才得出的。而后人的大量实验很难重复得出雷诺实验的准确数值,通常在之间。因此,从工程实用出发,教科书中介绍的园管下临界雷诺数一般是2000。 ⒋试结合紊动机理实验的观察,分析由层流过渡到紊流的机理何在?
从紊动机理实验的观察可知,异重流(分层流)在剪切流动情况下,分界面由于扰动引发细微波动,并随剪切流速的增大,分界面上的波动增大,波峰变尖,以至于间断面破裂而形成一个个小旋涡。使流体质点产生横向紊动。正如在大风时,海面上波浪滔天,水气混掺的情况一样,这是高速的空气和静止的海水这两种流体的界面上,因剪切流动而引起的界面失稳的波动现象。由于园管层流的流速按抛物线分布,过流断面上的流速梯度较大,而且因壁面上的流速恒为零。相同管径下,如果平均流速越大则梯度越大,即层间的剪切流速越大,于是就容易产生紊动。紊动机理实验所见的波动→破裂→旋涡→质点紊动等一系列现象,便是流态从层流转变为紊流的过程显示。
⒌分析层流和紊流在运动学特性和动力学特性方面各有何差异?
层流和紊流在运动学特性和动力学特性方面的差异如下表:
运动学特性:
动力学特性:
1.质点有律地作分层流动
1.流层间无质量传输
2.断面流速按抛物线分布
2.流层间无动量交换
3.运动要素无脉动现象
3.单位质量的能量损失与流速的一次方成正比
1.质点互相混掺作无规则运动
1.流层间有质量传输
2.断面流速按指数规律分布
2.流层间存在动量交换
3.运动要素发生不规则的脉动现象
3.单位质量的能量损失与流速的(1.75~2)次方成正比
实验六 文丘里流量计实验
根据能量方程式和连续性方程式,可得不计阻力作用时的文氏管过水能力关系式
<p class="
href="http://retype.wenku.bd
式中:Δh为两断面测压管水头差。
由于阻力的存在,实际通过的流量Q恒小于Q’。今引入一无量纲系数u=Q/Q’(μ称为流量系数),对计算所得的流量值进行修正。 即
<p class="
href="http://retype.wenku.bd
另,由水静力学基本方程可得气—水多管压差计的Δh为
<p class="
href="http://retype.wenku.bd
实验分析与讨论
⒈本实验中,影响文丘里管流量系数大小的因素有哪些?哪个因素最敏感?对d2=0.7cm的管道而言,若因加工精度影响,误将(d2-0.01)cm值取代上述d2值时,本实验在最大流量下的μ值将变为多少? 由式
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
可见本实验(水为流体)的μ值大小与Q、d1、d2、Δh有关。其中d1、d2影响最敏感。本实验中若文氏管d1 =1.4cm,d2=0.71cm,通常在切削加工中d1比d2测量方便,容易掌握好精度,d2不易测量准确,从而不可避免的要引起实验误差。例如当最大流量时μ值为0.976,若d2的误差为-0.01cm,那么μ值将变为1.006,显然不合理。
⒉为什么计算流量Q’与实际流量Q不相等?
因为计算流量Q’是在不考虑水头损失情况下,即按理想液体推导的,而实际流体存在粘性必引起阻力损失,从而减小过流能力,Q&Q’,即μ&1.0。 ⒊试证气—水多管压差计(图6.4)有下列关系:
<p class="
href="http://retype.wenku.bd
如图6. 4所述,
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
⒋试应用量纲分析法,阐明文丘里流量计的水力特性。
运用量纲分析法得到文丘里流量计的流量表达式,然后结合实验成果,便可进一步搞清流量计的量测特性。
对于平置文丘里管,影响ν1的因素有:文氏管进口直径d1,喉径d2、流体的密度ρ、动力粘滞系数μ及两个断面间的压强差ΔP。根据π定理有
<p class="
href="http://retype.wenku.bd
从中选取三个基本量,分别为:
<p class="
href="http://retype.wenku.bd
共有6个物理量,有3个基本物理量,可得3个无量纲π数,分别为:
<p class="
href="http://retype.wenku.bd
根据量纲和谐原理,π1的量纲式为
<p class="
href="http://retype.wenku.bd
L:1=a1+b1-3c1
T:0=- b1 M:0= c1
联解得:a1=1,b1=0,c1=0,则
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
将各π值代入式(1)得无量纲方程为
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
进而可得流量表达式为
<p class="
href="http://retype.wenku.bd
式(2)与不计损失时理论推导得到的
<p class="
href="http://retype.wenku.bd
相似。为计及损失对过流量的影响,实际流量在式(3)中引入流量系数uQ计算,变为
<p class="
href="http://retype.wenku.bd
比较(2)、(4)两式可知,流量系数uQ与Re一定有关,又因为式(4)中d2/d1的函数关系并不一定代表了式(2)中函数所应有的关系,故应通过实验搞清uQ与Re、d2/d1的相关性。
通过以上分析,明确了对文丘里流量计流量系数的研究途径,只要搞清它与Re及d2/d1的关系就行了。
由实验所得在紊流过渡区的uQ~Re关系曲线(d2/d1为常数),可知u因恒有μQ随Re 的增大而增大,&1,故若使实验的Re增大,uQ将渐趋向于某一小于1 的常数。
另外,根据已有的很多实验资料分析,uQ与d1/d2也有关,不同的d1/d2值,可以得到不同的uQ~Re关系曲线,文丘里管通常使d1/d2=2。所以实用上,对特定的文丘里管均需实验率定uQ~Re的关系,或者查用相同管径比时的经验曲线。还有实用上较适宜于被测管道中的雷诺数Re&2×105,使uQ值接近于常数0.98。
流量系数uQ的上述关系,也正反映了文丘里流量计的水力特性。
⒌文氏管喉颈处容易产生真空,允许最大真空度为6~7mH2O。工程中应用文氏管时,应检验其最大真空度是否在允许范围内。据你的实验成果,分析本实验流量计喉颈最大真空值为多少?
本实验若d1= 1. 4cm,d2= 0. 71cm,以管轴线高程为基准面,以水箱液面和喉道断面分别为1—1和2—2计算断面,立能量方程得
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
&-52.22cmH2O
,而由本实验实测为60.5cmH2O。
即实验中最大流量时,文丘里管喉颈处真空度
进一步分析可知,若水箱水位高于管轴线4m左右时,实验中文丘里喉颈处的真空度可达7mH2O(参考能量方程实验解答六—4)。
七 沿 程 水 头 损 失 实 验
一: 为 什 么 压 差 计 的 水 柱 差 就 是 沿 程 水 头 损 失 ?实 验 管 道 安 装 成 向 下 倾 斜 ,是 否 影响 实 验 成 果 ?
现 以 倾 斜 等 径 管 道 上 装 设 的 水 银 多 管 压 差 计 为 例(图 7. 3)说 明(图 中 A — A 为 水 平 线 ):
如 图 示 0 — 0 为 基 准 面 ,以 1 — 1 和 2 — 2 为 计 算 断 面 ,计 算 点 在 轴 心 处 ,设 定
<p class="
href="http://retype.wenku.bd
,由 能 量 方 程 可 得
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
表 明 水 银 压 差 计 的 压 差 值 即 为 沿 程 水 头 损 失 ,且 和 倾 角 无 关 。
二: 据 实 测 m 值 判 别 本 实 验 的 流 区 。 (
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
)曲 线 的 斜 率 m = 1. 0 ~ 1. 8,即
<p class="
href="http://retype.wenku.bd
比 ,表 明 流 动 为 层 流 m = 1. 0、紊 流光 滑 区 和 紊 流 过 渡 区(未 达 阻 力 平 方 区 )。
三: 实 际 工 程 中 钢 管 中 的 流 动 ,大 多 为 光 滑 紊 流 或 紊 流
过 渡 区 ,而 水 电 站 泄 洪 洞 的流 动 ,大 多 为 紊 流 阻 力 平 方 区 ,其 原 因 何 在 ?
钢 管 的 当 量 粗 糙 度 一 般 为 0. 2mm,常 温(300cm/s,若 实 用 管 径 D =(20 ~ 100)cm,其
<p class="
href="http://retype.wenku.bd
)下 ,经 济 流 速
的 = 0. 0002 ~ 0. 001,由 莫 迪 图 知 ,流 动 均 处 在 过 渡 区 。
若 需 达 到 阻 力 平 方 区 ,那 么 相 应 的
<p class="
href="http://retype.wenku.bd
,流 速 应
达 到(5 ~ 9)m/s。这 样 高 速 的 有 压管 流 在 实 际 工 程 中 非 常 少 见 。
而 泄 洪 洞 的 当 量 粗 糙 度 可 达(1 ~ 9)mm,洞 径 一 般 为 (2 ~ 3)m,过 流 速 往 往 在(5 ~ 10)m/s以 上 ,其般 均 处 于 阻 力 平 方 区 。
四: 管 道 的 当 量 粗 糙 度 如 何 测 得 ?
<p class="
href="http://retype.wenku.bd
当 量 粗 糙 度 的 测 量 可 用 实 验 的 同 样 方 法 测 定
<p class="
href="http://retype.wenku.bd
值 ,然 后 用 下 式 求 解 :
(1)考 尔 布 鲁 克 公 式
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
迪 图 即 是 本 式 的 图 解 。 (2)S·J公 式
<p class="
href="http://retype.wenku.bd
(3)Barr公 式
<p class="
href="http://retype.wenku.bd
(3)式 精 度 最 高 。在 反 求
<p class="
href="http://retype.wenku.bd
直 接 由度
<p class="
href="http://retype.wenku.bd
时 ,(2)式 开 方 应 取 负 号 。也 可
,进 而 得 出 当 量 粗 糙
关 系 在 莫 迪 图 上 查 得
五: 本 次 实 验 结 果 与 莫 迪 图 吻 合 与 否 ?试 分 析 其 原 因 。 通 常 试 验 点 所 绘 得 的
曲 线 处 于 光 滑 管 区 ,本 报 告
所 列 的 试 验 值 ,也 是 如 此 。但 是 ,有 的 实 验 结 果
<p class="
href="http://retype.wenku.bd
点 落 到 了 莫 迪 图 中 光 滑 管 区 的 右 下 方 。对 此 必 须 认 真 分 析 。
如 果 由 于 误 差 所 致 ,那 么 据 下 式 分 析
<p class="
href="http://retype.wenku.bd
d 和 Q 的 影 响 最 大 ,Q 有 2% 误 差 时 , 就 有 4% 的 误 差 ,而 d 有 2% 误 差 时 ,
<p class="
href="http://retype.wenku.bd
可 产 生 10% 的 误 差 。Q 的 误 差 可 经 多 次 测
量 消 除 ,而 d 值 是 以 实 验 常 数 提 供 的 ,由 仪 器 制 作 时 测 量 给 定 ,一 般
<p class="
href="http://retype.wenku.bd
& 1%。如 果 排 除 这 两 方 面 的 误 差 ,实 验 结 果 仍 出 现 异 常 ,那 么 只 能 从 细 管 的 水 力 特 性 及 其 光 洁 度 等 方 面 作 深 入 的 分 析 研 究 。还 可 以 从 减 阻 剂 对 水 流 减 阻 作 用
上 作 探 讨 ,因为 自 动 水 泵 供 水 时 ,会 渗 入 少 量 油 脂 类 高 分 子 物 质 。总 之 ,这 是 尚 待 进 一 步 探 讨 的 问 题 。
(八)局部阻力实验
1、结合实验成果,分析比较突扩与突缩在相应条件下的局部损失大小关系。
表明影响局部阻力损失的因素是v和d1d2,由于有
突扩:?e?(1?A1A2)2
突缩:?s?0.5(1?A1A2) 则有
?s0.5(1?A1A2)0.5
?e1?A1A2(1?A1A2)2
A1A2?0.5 或
d1d2?0.707
时,突然扩大的水头损失比相应突然收缩的要大。在本实验最大流量Q下,突扩损失较突缩损失约大一倍,即hjehjs?6.54/3.60?1.817。d1d2接近于1时,突扩的水流形态接近于逐渐扩大管的流动,因而阻力损失显著减小。
2.结合流动演示仪的水力现象,分析局部阻力损失机理何在?产生突扩与突缩局部阻力损失的主要部位在哪里?怎样减小局部阻力损失?
流动演示仪 I-VII型可显示突扩、突缩、渐扩、渐缩、分流、合流、阀道、绕流等三十余种内、外流的流动图谱。据此对局部阻力损失的机理分析如下:
从显示的图谱可见,凡流道边界突变处,形成大小不一的旋涡区。旋涡是产生损失的主要根源。由于水质点的无规则运动和激烈的紊动,相互摩擦,便消耗了部分水体的自储能量。另外,当这部分低能流体被主流的高能流体带走时,还须克服剪切流的速度梯度,经质点间的动能交换,达到流速的重新组合,这也损耗了部分能量。这样就造成了局部阻力损失。
从流动仪可见,突扩段的旋涡主要发生在突扩断面以后,而且与扩大系数有关,扩大系数越大,旋涡区也越大,损失也越大,所以产生突扩局部阻力损失的主要部位在突扩断面的后部。而突缩段的旋涡在收缩断面前后均有。突缩前仅在死角区有小旋涡,且强度较小,而突缩的后部产生了紊动度较大的旋涡环区。可见产生突缩水头损失的主要部位是在突缩断面后。
从以上分析知。为了减小局部阻力损失,在设计变断面管道几何边界形状时应流线型
化或尽量接近流线型,以避免旋涡的形成,或使旋涡区尽可能小。如欲减小本实验管道的局部阻力,就应减小管径比以降低突扩段的旋涡区域;或把突缩进口的直角改为园角,以消除突缩断面后的旋涡环带,可使突缩局部阻力系数减小到原来的1/2~1/10。突然收缩实验管道,使用年份长后,实测阻力系数减小,主要原因也在这里。
3.现备有一段长度及联接方式与调节阀(图5.1)相同,内径与实验管道相同的直管段,如何用两点法测量阀门的局部阻力系数?
两点法是测量局部阻力系数的简便有效办法。它只需在被测流段(如阀门)前后的直管段长度大于(20~40)d的断面处,各布置一个测压点便可。先测出整个被测流段上的总水头损失hw1?2,有
hw1?2?hj1?hj2?????hjn?????hji?hf1?2
式中:hji— 分别为两测点间互不干扰的各个局部阻力段的阻力损失;
hjn— 被测段的局部阻力损失; hf1?2— 两测点间的沿程水头损失。
然后,把被测段(如阀门)换上一段长度及联接方法与被测段相同,内径与管道相同的
直管段,再测出相同流量下的总水头损失hw1?2,同样有
h'w1?2?hj1?hj2?????hji?1?hf1?2
hjn?hw1?2?hw1?2
※4、实验测得突缩管在不同管径比时的局部阻力系数Re?105
<p class="
href="http://retype.wenku.bd
试用最小二乘法建立局部阻力系数的经验公式 (1)确定经验公式类型 现用差分判别法确定。
由实验数据求得等差?x(令x?d2/d1)相应的差分?y(令y??),其一、二级差分如下表
<p class="
href="http://retype.wenku.bd
二级差分?y为常数,故此经验公式类型为
y?b0?b1x?b2x2
(2)用最小二乘法确定系数 令
??yi?[b0?b1x1?b2xi2]
?是实验值与经验公式计算值的偏差。
如用?表示偏差的平方和,即
???????yi??b0?b1xi?b2xi2??
为使?为最小值,则必须满足
?0??b?0???
????0??b?2
于是式(2)分别对b0、b1、b2求偏导可得
y?5b?bx?bx???i01i2i?0?1i?1i?1?i?5555?23
??yixi?b0?xi?b1?xi?b2?xi?0
1i?1i?1i?1?i?5555?yx2?b234
x?bx?bx?0????ii0i1i2i?i?1
i?1i?1i?1?
列表计算如下:
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
?1.4?5b0?3b1?2.2b2?0
?0.6?3b0?2.2b1?1.8b2?0
?0.b?1.8b?1.567b?0
b0?0.5,b1?0,b2??0.5,代入式(1) 有y?0.5(1?x2)
于是得到突然收缩局部阻力系数的经验公式为
??0.5[1?(d2/d1)2]
※5.试说明用理论分析法和经验法建立相关物理量间函数关系式的途径。
突扩局部阻力系数公式是由理论分析法得到的。一般在具备理论分析条件时,函数式可直接由理论推演得,但有时条件不够,就要引入某些假定。如在推导突扩局部阻力系数时,假定了“在突扩的环状面积上的动水压强按静水压强规律分布”。引入这个假定的前提是有充分的实验依据,证明这个假定是合理的。理论推导得出的公式,还需通过实验验证其正确性。这是先理论分析后实验验证的一个过程。
经验公式有多种建立方法,突缩的局部阻力系数经验公式是在实验取得了大量数据的基础上,进一步作数学分析得出的。这是先实验后分析归纳的一个过程。但通常的过程应是先理论分析(包括量纲分析等)后实验研究,最后进行分析归纳。
九孔 口 管 嘴 实 验
一. 结 合 观 测 不 同 类 型 管 嘴 与 孔 口 出 流 的 流 股 特 征 ,分 析 流 量 系 数 不 同 的 原 因 及 增 大 过 流 能 力 的 途 径 。
据 实 验 报 告 解 答 的 实 际 实 验 结 果 可 知 ,流 股 形 态 及 流 量 系 数 如 下 :
园 角 管 嘴 出 流 的 流 股 呈 光 滑 园 柱 形 ,u = 0. 935;
直 角 管 嘴 出 流 的 流 股 呈 园 柱 形 麻 花 状 扭 变 ,u = 0. 816; 园 锥 管 嘴 出 流 的 流 股 呈 光 滑 园 柱 形 ,u = 0. 934;
孔 口 出 流 的 流 股 在 出 口 附 近 有 侧 收 缩 ,呈 光 滑 园 柱 形 ,u = 0. 611。
影 响 流 量 系 数 大 小 的 原 因 有 :
(1)出 口 附 近 流 股 直 径 ,孔 口 为
<p class="
href="http://retype.wenku.bd
管 嘴 的 出 口 内 径 ,
<p class="
href="http://retype.wenku.bd
, 是 因 为 前 者 进 口 ,其 余 同 (2)直 角 进 口 管 嘴 出 流 ,u 大 于 孔 口
<p class="
href="http://retype.wenku.bd
段 后 由 于 分 离 ,使 流 股 侧 收 缩 而 引 起 局 部 真 空(实 际 实 验 实 测 局 部 真 空 度 为 16cm),产 生 抽 吸 作 用 从 而 加 大 过 流 能 力 。后 者 孔 口 出 流 流 股 侧 面 均 为 大 气 压 ,无 抽 吸 力 存 在 。
(3)直 角 进 口 管 嘴 的 流 股 呈 扭 变 ,说 明 横 向 脉 速 大 ,紊 动 度 大 ,这 是 因 为 在 侧 收 缩 断 面 附 近 形 成 漩 涡 之 故 。而 园 角 进 口 管 嘴 的 流 股 为 光 滑 园 柱 形 ,横 向 脉 速 微 弱 ,这 是 因 进 口 近 乎 流 线 形 ,不 易 产 生 漩 涡 之 故 ,所 以 直 角 管 嘴 比 园 角 管 嘴 出 流 损 失 大 ,u 值 小 。
(4)园 锥 管 嘴 虽 亦 属 直 角 进 口 ,但 因 进 口 直 径 渐 小 ,不 易 产 生 分 离 ,其 侧 收 缩 断 面 面 积 接 近 出 口 面 积(u 值 以 出 口 面 积 计),故 侧 收 缩 并 不 明 显 影 响 过 流 能 力 。另 外 ,从 流 股 形 态 看 ,横 向 脉 动 亦 不 明 显 ,说 明 渐 缩 管 对 流 态 有 稳 定 作 用(工 程 或 实 验 中 ,为 了 提 高 工 作 段 水 流 的 稳 定 性 ,往 往 在 工 作 段 前 加 一 渐 缩 段 ,正 是 利 用 渐 缩 的 这 一 水 力 特 性 )。能 量 损 失 小 ,因 此 其 u 值 与 园 角 管 嘴 相 近 。
从 以 上 分 析 可 知 ,为 了 加 大 管 嘴 的 过 流 能 力 ,进 口 形 状 应 力 求 流 线 形 化 ,只 要 将 进 口 修 园 ,提 高u 的 效 果 就 十 分 显 著 。孔 口 及 直 角 管 嘴 的 流 量 系 数 的 实 验 值 有 时 比 经 验 值 偏 大 ,其 主 要 原 因 亦 与 制 作 工 艺 上 或 使 用 上 不 小 心 将 孔 口 、管 嘴 的 进 口 棱 角 , 磨 损 了 有 关 。
二. 观 察 d/H & 0. 1 时 ,孔 口 出 流 的 侧 收 缩 率 较 d/H & 0. 1 时 有 何 不 同 ?
当 d/H & 0. 1 时 ,观 测 知 收 缩 断 面 直 径 增 大 ,并 接 进 于 孔 径 d,这 叫 作 不 完 全 收 缩 ,实 验 测 知 ,u 增 大 ,可 达 0. 7 左 右。
三. 试 分 析 完 善 收 缩 的 锐 缘 薄 壁 孔 口 出 流 的 流 量 系 数
<p class="
href="http://retype.wenku.bd
有 下 列 关 系 :
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
为 韦 伯 数 。根 据 这 一 关 系 ,并 结 合 其 他 因 素 分 析
= 0. 611)的 原 因 。 本 实 验 的 流 量 系 数 偏 离 理 论 值(
薄 壁 孔 口 在 完 善 收 缩 条 件 下(孔 口 距 相 邻 壁 面 距 离 L & 3d),影 响 孔 口 出 流 流 速 v 的 因 素 有 :作 用 水 头 H,孔 径 d,流 体 的 密 度
<p class="
href="http://retype.wenku.bd
,即 ,重 力 加 速 度 g,粘 滞 系 数 u 及 表 面 张 力 系 数
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
定 律 分 析 流 量 Q 与 各 物 理 量 间 的 相 互 关 系 ,然 后 推 求 与 流 量 系 数 相 关 的 水 力 要 素 。
因 v、H、 是 三 个 量 纲 独 立 的 物 理 量 ,只 有 :
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
<p class="
href="http://retype.wenku.bd
根 据 量 纲 和 谐 原 理 ,(2)式 的 量 纲 应 为
名词解释 1 流体:能够流动的物体。不能保持一定的形状,而且有流动性。 2 脉动现象:在足够时间内,速度始终围绕一平均值变化,称为脉动现象。 3 水力粗糙管:管壁加剧紊流,增加了流体流动阻力,这类管称为水力粗糙管。 4 牛顿流:符合牛顿粘性定律的流体。 5 紊流:流体流动时,这种流动称为紊流。 6
实验八、板式塔流体力学性能测定 一、实验目的 1.观察塔板上气、液两相流动状况。 2.测定气体通过塔板的压力降与空塔气速的关系、雾沫夹带率与空塔气速的关系、泄漏率和空塔气速的关系。 3.研究板式塔负荷性能图的影响因素并做出筛板塔的负荷性能图。 二、实验原理 板式塔为逐级接触的气~液传质设备,当液体
??????????????????????????????????? doi:10.11835/j.issn..0 2014年第23卷第2期高等建筑教育 JOURNALOFARCHITECTURALEDUCATIONININSTITUTIONSOFHIGHE
工程流体力学实验报告之分析与讨论 实验一 流体静力学实验 实验分析与讨论 1.同一静止液体内的测管水头线是根什么线? 测压管水头指,即静水力学实验仪显示的测管液面至基准面的垂直高度。测压管水头线指测压管液面的连线。实验直接观察可知,同一静止液面的测压管水头线是一根水平线。 2.当PB 0时,试根据
计算流体力学
lixl@ Tel:
; 力学所主楼 力学所主楼219房间 房间
参考数目: 傅德薰等: 计算流体力学》 计算空气动力学》 参考数目: 傅德薰等:《计算流体力学》,《计算空气动力学》 阎超: 计算流体力学方法及应用》 阎超:《计算流体力
工程流体力学及水力学实验报告及分析讨论 实验一 流体静力学实验 实验原理 在重力作用下不可压缩流体静力学基本方程 或 (1.1) 式中: z被测点在基准面的相对位置高度; p被测点的静水压强,用相对压强表示,以下同; p0水箱中液面的表面压强; γ液体容重; h被测点的液体深度。 另对装有水油(图
实验6 填料吸收塔实验报告 第四组成员:王锋,郑义,刘平,吴润杰 一、 实验名称 填料吸收塔实验 二、 实验目的 1、 了解填料吸收塔的构造并实际操作。 2、 了解填料塔的流体力学性能。 3、 学习填料吸收塔传质能力和传质效率的测定方法。 三、实验内容 测定填料层压强降与操作气速的关系曲线,并用Δ
中国石油大学(华东) 工程流体力学 实验报告 实验日期: 成绩: 班级: 学号: 姓名: 教师: 同组者: 实验六、流动状态实验 一、实验目的 1.测定液体运动时的沿程水头损失(hf)及断面的; 2.绘制流态(lghf—lgv) 二、实验装置 本室验的装置如图所示。本实验所用的设备有流态实验装置、
流体力学多媒体课件
安徽理工大学机械学院 机械学院 《流体力学》课题组 安徽理工大学机械学院 绪论
第1节 基本概念 第2节 流体的主要物理性质 第3节 流体力学的研究方法
1、流体力学发展简史 2、流体力学的研究方法 3、作用在流体上的力 4、流体的主要物理性质 5、流体力学的模型 流体力学精品
重 庆 大 学 学 生 实 验 报 告
实验课程名称 流体力学实验 开课实验室 流体力学实验室 流体力学实验室 学 院 年级 专业班 学 生 姓 名 学 号 开 课 时 间 至 学年第 学期 总 成 绩 教师签名 城环学院制 城环学院制 第1/5页 《流体力学》实验报告 流体力学》
开课实验室:流
化 工 原 理 实 验 报 告 实 验 名 称: 填料吸收传质系数测定 学 院: 专 业: 化学工程与工艺 班 级: 化工09-3班 姓 名: 曾学礼 学 号
同 组 者 姓 名: 周 锃 刘翰卿 指 导 教 师: 日 期: 2011 年9月20日 第1/6页 一、 实验目
本文由()首发,转载请保留网址和出处!
免费下载文档:}

我要回帖

更多关于 大前庭导水管综合症 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信