微纳金属3D打印技术应用:AFM探针?

近年来,微米尺度金属增材制造技术得到了快速的发展,并广泛应用于光学、微机器人、微电子学等领域。目前,微米尺度3D金属结构可以采用聚焦电子/离子束诱导沉积、激光感应光致还原等3D打印技术直接制备而成,或者采用双光子聚合3D打印技术结合电镀技术多步制备而成。其中,基于金属离子局部电化学还原反应的电化学沉积技术被认为具有极大的优势:该技术无需进行任何后处理,而且可制备致密性好、导电、无污染的金属样件。然而,如何在保持打印分辨率的情况下提高打印速率是该技术面临的一个难题。

本研究论文是基于中空原子力显微镜(AFM)悬臂梁的金属电化学沉积3D打印系统,在保持电场电势和体素高度不变的情况下,研究了施加压力和喷嘴直径对体素水平尺寸的影响。研究结果发现,在打印过程中保持喷嘴直径不变,针对施加压力的实时调整可以实现体素面积两个数量级的跨越,并且通过改变施加压力,使用孔径为500nm的喷嘴成功制备了四根线径不同的铜线圈。基于以上研究,该技术通过精确调整体素尺寸不仅可以实现同一打印样件从亚微米级到亚毫米级的跨尺度制作,而且还可以显著提高打印速率。该技术使用铜作为金属打印材料,但同样适用于其他电镀金属。

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

}

因具有高分辨率、可实现复杂结构精细打印的特点,DLP光固化3D打印技术已在生物制造领域大放异彩。目前,其已被用于多种组织的重建或修复研究,包括脊髓、周围神经、血管等。现行DLP生物制造研究主要在体外进行组织的构建,经过一定时间培养后植入体内,这往往会造成二次创伤。若能通过微创方式在皮下直接进行3D打印将大大降低医源性创伤带来的风险。

通常,DLP墨水的光引发剂需要通过紫外、蓝光或可见光激发(图1)。这些光波的组织穿透能力差,难以实现皮下固化。波长780~2526nm的不可见近红外(NIR)光可以穿透深层组织,并已用于药物控释、光动力疗法、光热疗法、体内成像等,是一种广泛使用的组织穿透性光波。若想实现NIR固化生物墨水,就需要适配的光引发剂。上转换材料可将近红外光转化为紫外/可见光,将其与普通DLP光引发剂结合使用即可实现生物墨水的NIR固化。

近日,四川大学的苟马玲研究员、钱志勇教授和魏霞蔚教授团队通过蓝光引发剂LAP包裹上转换纳米粒子制备了核-壳结构纳米光引发剂(UCNP@LAP)。依托该光引发剂开创性地实现了皮下原位DLP打印。相关研究论文:Noninvasive in vivo

图1 光固化生物打印常用光引发剂及其激发波段

图2 基于UCNP@LAP核-壳结构纳米光引发剂的近红外皮下DLP打印

上转换材料是一种能实现上转换发光的材料。所谓上转换发光,指的是材料受到低能量的光激发,发射出高能量的光,即将吸收的长波长、低频率光转换为短波长、高频率光。

上转换材料由无机基质及镶嵌在其中的稀土掺杂离子组成,通过调节无机基质及掺杂稀土离子组成、比例可将近红外激发光转化为紫外或可见光。

研究人员通过改进的方法合成了水性上转换材料纳米粒子(UCNPs),该上转换纳米粒子可在水溶液中稳定分散且表面带正电荷,通过与带负电荷LAP间的静电吸附作用制备了核-壳结构的UCNP@LAP纳米光引发剂(图3A)。与上转换材料/LAP直接混合相比,这种核-壳结构有效提高了近红外光的激发效率。同时,由于LAP的包裹,UCNP发射出的紫外光被LAP屏蔽吸收(图3D),降低了对细胞的损伤。

模拟皮下DLP打印测试


  • AFM长篇综述:软物质/软材料的3D打印

  • 高精度3D打印聚合物生物支架定制

  • 高精度3D打印水凝胶生物支架定制

  • 3D打印构建全血管网络及肿瘤-血管相互作用初探
  • 生物3D打印-从形似到神似
  • 3D打印助力骨科精准临床应用:临床案例解

  • 多尺度3D打印高生物相容性及力学强度兼具的组织工程支架

}

我要回帖

更多关于 金属探针 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信