数学难题问题

比如你做饭时间太长,画画画的太烂,投篮投的不准,相亲找不到对象,恋爱感觉吃亏,打牌老是输钱,出差错过航班……作为体育老师教出的数学渣,想听听数学大V们,是如何将数学应用与工作和生活中,或者如果用数学解决其他问题的。
我觉得不是一切问题都是数学问题,而是人能准确、漂亮、利落解决的都是可以用数学描述的问题。不能用数学描述的问题,或者需要实际经验的考验磨砺,或者需要大量实验的重复尝试。
很小的时候(一岁左右)我妈看到我跑到洗手间取了一个脸盆,翻扣在地上踩着盆子够到了水龙头,而这一行为不可能是模仿大人得来的,那时我爸就觉得我应该可以学习数学了——因为我开始拥有创造性而不是机械模仿的能力。&br&高中时候一好哥们儿跟我说起虎山公园里的摸乒乓球抽奖游戏,我俩琢磨了老一阵子,我算出来了各种中奖概率,欣喜的觉得有搞头,后来才知道世间竟有排列组合这种东西,而数学书里给出的公式远比我的方法具有普适性。&br&见过斐波那契数列后,我曾想用一个公式来总结它每一项的规律,我假设它们递推公式里含有指数函数,结果搞出来一个我自己都不信的含无理数的表达式,后来我才知道有个东西叫数列。&br&我非数学系的,但是这些事情让我渐渐明白一个道理:数学作为一个思想工具,是防止我们这些愚笨之人解决不那么复杂的问题时误入歧途的懒办法,与生俱来的创造性随着人类复杂社会秩序的约束变得越来越低,普通人连魔方这种简单组合问题都难以有直觉,而天才为我们找到了思想捷径,所以当一个人觉得数学没啥意义的时候,它可能已经使你避免了许多许多弯路。假如没有数学,摸乒乓球抽奖我要花三天想明白,下次摸彩票抽奖我又得想三天;推导斐波那契数列要用一上午,换个别的数列又得用好几天……思想劳动会重复到直到我意识到这些事物有着内在的联系为止,而那内在联系,就是数学规律。&br&为什么数学讲究独立思考呢?我有这样的感悟:当你学习数学的时候,你学到什么不是最重要的,重要的是你在学习的过程中脑子里在想什么。呆板的教育下很容易扼杀人的创造性思维与现实建立映射的能力,而数学作为思辨的极致本身就充满了魅力:世界很大,但是再大的世界也是建立在简洁的规律之上的。&b&当你感觉数学很枯燥的时候,惟一的原因是你没有自己动过脑子、走过弯路,你体会不到它带来的“高效”,只有被剧透的麻木,越是在数学路上“浪费”时间多的人,往往越有着创造力与难以为常人理解的特殊直觉。&/b&&br&哥尼斯堡七桥问题本来看起来与数学毫无关系,但是欧拉提炼了这看似简单的问题的本质开创了两门数学领域;除了好玩之外似乎没什么意义的数论是现代密码学的基础……这些与现代生活有着很密切联系的东西确实与食色性也的东西没有直接的联系,但是如果你需要更有理性、更有规律的生活而不愿做被规划者的话,数学几乎是一条必走的路——不一定是数学课,而是无可替代的数学思想。&br&既然说起来了,那我可以告诉大家几个本人&b&从数学中得来的、绝对可谓影响一生的信条:&/b&&br&&b&1、脑洞大开是有意义的 &/b&生活中不知道有多少人语重心长的告诉你不要多想,&b&但并不是任何事物都像生活一样经不起推敲&/b&。数学中最异想天开的想法得到的看似无实际用途的数学工具都在科技史上留下了浓墨重彩的一笔,而生活中将事物关系进行抽象化分析的过程让我对生活的本质有了更深的理解,&b&没有比数学更能培养的深入思考的习惯的学科了,它是最纯粹的思辨。&/b&请大家想想,同样是思考,为何会有“思想深度”一词呢?制造印刷电路版、设计飞机气动翼型表面并没有用到勾股定理,&b&但是任何与人类相似的有机文明必然在逻辑思维上经历这一步才能发现更深刻的规律,根据历史经验,哪怕人类演进重来一万次,几乎可以断定勾股定理比阿波罗登月要早。&/b&我从数学中明白了这样一句话&b&:人类惧怕成功。&/b&深入的思考是那么那么的困难,你只要心存一点点疑虑、有着一点点胆怯,努力就彻底前功尽弃,而大胆地猜想与证明简直是反人类的习惯,要经过痛苦与孤独的试炼才可能养成。纵然我在数学方面是渣,但是我曾经体会过一道没人关心的题画了十七条辅助线用一周时间终于解答出来是那种极致的快感,那莫名的感动与孤独的体验每每回忆起来,就超越了我所有青春时代的悸动。&br&&b&2、脑洞大开要遵循严格的逻辑
&/b&为何说教育能改变中国民科满天飞的局面呢?不是因为学到的数学只是能证伪一些似是而非的东西,而是数学给了你一个严谨的习惯与良好的逻辑,让你知道哪里该存疑、怎样去证明或者否定。最细微的偏差会影响整个系统,而一点点理论上的漏洞会造成灾难性后果,这一点不仅仅是对数学而言成立,哪怕你办公司、卖军火、搞政治都需要那种慎之又慎的“公理”与“推导”思维,无中生有似的抓住突破的机遇&br&&b&3、简单事物背后有着深刻规律,而深刻的规律往往是简洁的 &/b&社会生活中的规则看似复杂,其实如同围棋一般规则极简而变幻极多,在&b&混乱与无序之中总结规律的人绝地拥有着较高的数学归纳能力&/b&,当你从人性、从政治、从经济等多角度分析某社会现象时,其实你正在应用着最为高深的数学思想,只不过因着个人的水平,同样面对面对一图书馆的书(信息),有人总结出来的是《满分作文》,有些人总结出来的是《马克思主义政治经济学》。非洲农业为什么不发达……哎呀,扯远了&br&不知道一个额外的收获算不算数学的作用。从小父亲给我灌输“世界是规律驱动的”这一概念,长大了看任何宗教典籍其思辨性除佛教外大多NAIVE,连我都自创了一个自洽的“科学”宗教,&b&在这世界上你要么把一切因果都向上递归给一个视你为草芥的全能的神省去探究的麻烦,要么老老实实从最基本的规律一点点理解,除此之外想活个明白再无他法。&/b&因此我不信鬼不敬神,作为一个曾在原始森林里大半夜从古墓里掘出骷髅还面不改色的人,我认为就短暂的生命而言,没有畏惧的活着、只有未知去探索的感觉真好。&b&相信世界可以被认识,这本身就是一种信仰,没有这一信仰先辈绝无走出愚昧、对抗世俗的引力的悲壮努力&/b&&br&&b&综上,数学是天才为我们留下的宝贵的思维捷径,连捷径都懒得走的人,要么绕一圈弯路发现死活绕不过去,要么这辈子思维水平也就那么地了。哪位觉得数学是简单问题复杂化的小清新给我用优雅的语言描述一下伯努利方程?&/b&谈情怀还是用美丽的心灵弹奏一首图样图森破吧。&br&再痛恨数学,我还是坚持用数学去毒害我的下一代。当一个人真正为数学的美感所感动的时候,他真的会发现世间万物没有任何学科比数学更尊重求索者本人。&br&负能量时间到:当然,对于纯数学这门学科而言,作为个体有理由痛恨它,毕竟只有、也只需要极少数天赋的人能推动这门学科的发展,向未知挑战的路上,&b&其他人只是必要存在的炮灰&/b&&br&(我也是安静的做一个炮灰并以此为荣,毕竟在挤满了天才与极度勤奋的天才的数学之路上,我等只有跟着提鞋的份儿,不过仅仅是试图理解他们就已经让我感到无比荣幸了。高中我阅读理解17分经常得2分,时常搞不明白为何要那么理解,没事儿跟老师抬杠,这就是数学的代价吧:你不会理解错数学家的意思,懂了就是懂了,没懂真的是不懂,对我而言他们才是跨越时空与后人无障碍交流的贤者而非神棍)&br&私货:谨以此文献给泰安一中的卢老师与刘老师,一个教了我这个“癞蛤蟆垫桌子腿非学数学”的奇才(pa),一个没计较我三年没交过数学作业。附一段我对老卢的描写:&br&&p&……进入了数学竞赛班,第一次有了与偶像级数学老师卢**面对面的机会。那天选拔考试时的惊鸿一瞥,给了我一个印象:老卢是个数学鬼才。他穿着课本插图里孔乙己式的长衫,戴着老式的圆框大眼镜,那酒瓶底厚的镜片把他眼睛放大的活像只猫头鹰,脑袋看上去比别人要大一圈,发型为“聪明绝顶”式。他端着搪瓷杯,迈着机械舞步向我们走来,初秋的阳光似乎给他加了一圈“天才光环”。我跟**说,不知为何,我觉得他有六七十年代搞两弹一星的老科学前辈的气质,**说很有可能,看他那模样,可能是当年核爆成功的时候他光顾着高兴,结果跑的太慢落在了后面,没来得及跑进掩体。&/p&&p&老卢的数学竞赛班。第一堂课,老卢用含混不清的莱芜话欢迎我们加入前程远大的竞赛班,他说:“银儿嗯(他特有的感叹词)。有些同学啊,他崇拜我。非得学数学,他该行吗?癞蛤蟆垫桌子腿,硬撑啊。”然后思维超越的讲起了课。他的语文一定是数学老师教的,特别喜欢滥用成语:“银嗯儿。这个题啊,当机立断,画示意图啊!选择题嘛,坑蒙拐骗,不择手段啊!”扶扶眼镜又看了看眼前写满黑板还没解完的题,自言自语起来:“嗯?又出问题了。唉。出问题了。是出问题了。快想想,出什么问题了?唉……哎!……哎?这不做完了嘛!”讲题的时候想起什么来讲什么:“我们这次先讲第二问啊,因为一问最难啊。当然啦,第三问更难啊。”我有时怀疑他的数学逻辑神经太过发达,连运动神经都搭上面,不只是思维太活跃神经元漏了电还是怎么回事儿,一讲起课来他就手舞足蹈,一边写着狂草板书一边迈开太空舞步,我们在台下都惊呆了。以前我们自视甚高,现在听他的课我们都觉着自己是智障儿童,他经常一副鄙夷的眼神看着台下张大了嘴不知所云的学生,说:“这题不是显然嘛!哎,你看看,又孤陋寡闻了。”…………&/p&
很小的时候(一岁左右)我妈看到我跑到洗手间取了一个脸盆,翻扣在地上踩着盆子够到了水龙头,而这一行为不可能是模仿大人得来的,那时我爸就觉得我应该可以学习数学了——因为我开始拥有创造性而不是机械模仿的能力。 高中时候一好哥们儿跟我说起虎山公园…
我记得以前有一个问题,大概是学了理工科后对你的世界观(生活)带来了多大影响,我当时自己想了想,发现了解计算机、了解一下电路的知识,让我对很多东西都有了不一样的认识,单单数学,学了和没学,我对其它事物的看法几乎没有直接改观&br&&br&然后我就反思了一下,应该是因为人的逻辑链走不了那么长,当你把一个问题真的划归到数学问题的时候,黄花菜都凉了。就像我还说化学可以某种程度上划归到物理呢,可是真这样做几乎是不现实的&br&&br&&br&&br&&br&&br&&br&&br&再后来我意识到,题主说的东西好像是一门课,叫数学模型……而我没学过那个,我学纯数学的……&br&&br&豁然开朗……
我记得以前有一个问题,大概是学了理工科后对你的世界观(生活)带来了多大影响,我当时自己想了想,发现了解计算机、了解一下电路的知识,让我对很多东西都有了不一样的认识,单单数学,学了和没学,我对其它事物的看法几乎没有直接改观 然后我就反思了一…
已有帐号?
无法登录?
社交帐号登录您好,欢迎来到北京新东方学校!报名咨询热线:010-;官方微信咨询:VBJXDF
泡泡(POP)少儿培训
泡泡幼儿全科
泡泡幼小衔接
· · · · · ·
······
当前位置:
> 少年课程
小学数学常见问题时间:  作者:  来源:新东方论坛  1、对知识点的理解停留在一知半解的层次上;
  2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
  3、解题时,小错误太多,始终不能完整的解决问题;
  4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
  5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
  以上这些问题如果不能很好的解决,在初中的两极分化阶段,同学们可能就会出现成绩的滑坡。
  (1)细心地发掘概念和公式
  很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
  我的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
  (2)总结相似的类型题目
  这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
  我的建议是:“总结归纳”是将题目越做越少的最好办法。
  (3)收集自己的典型错误和不会的题目
  同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
  我的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
  (4)就不懂的问题,积极提问、讨论
  发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
  讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
  我的建议是:“勤学”是基础,“好问”是关键。
  (5)注重实战(考试)经验的培养
  考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
  我的建议是:把“做作业”当成考试,把“考试”当成做作业。
  (6)明确遗忘的规律,把握好记忆的良机。
  遗忘速度是先快后慢
  研究表明,在记忆后20分钟、1小时、8小时、24小时、2天、6天、1个月时间后相对应的记住率为:58%、44%、36%、34%、28%、25%、21%。也就是说,在记忆之后短时间内,我们所记忆的东西会快速遗忘,随着时间逐渐增加,遗忘的速度不再如此迅速。这样,我们就应该知道老师们苦口婆心“及时复习”的教导不无道理。越是及时复习,我们遗忘的东西就会越少,我们的宝贵时间也就节约得越多,对于像我这样的懒人来说,需要花费的时间也就越少,也可以玩得更加Happy。当然,每个人的遗忘规律是由差别的,通过简单的试验总结出自己不同时间的遗忘规律,按照自己的遗忘规律来复习和回忆需要记住的事情,就能使我们事半功倍而且不会忘记重要的事情。单纯的一次次反复记忆是不科学也是不合算的,在记忆遗忘最快的阶段及时复习,比如一周以内按照规律进行复习,以后就只在回忆不起来的时候进行回顾式复习,才是恰当和高效的。
  科学研究表明,人每天有四个高潮记忆点:
  第一点是清晨六至七点。此时大脑已在睡眠过程中完成了对头一天所输入信息的编码工作,加上没有前后识记材料的干扰,识记印象清晰,记忆效率高。第二点是上午八至十点。此时精力旺盛,识记材料的效率高,记忆量较大。第三点是傍晚六至八点,第四点是临睡前一两个小时,我们应该好好把握这些时间段进行学习,这样会起到事半功倍的效果。
  我的建议是:及时复习,做到温故而知新。
  以上,我就数学经常出现的问题,给出了建议,但有一点要强调的是,任何方法最重要的是有效,同学们在学习中千万要避免形式化,要追求实效。任何考试都是考人的头脑,决不是考大家的笔记记的是否清楚,计划制定的是否周全。
焦点新闻·15-02-15·14-07-31·16-03-16·16-03-07·16-02-29·16-01-20·15-12-24·15-10-19·15-08-06·15-07-10
离您家最近的学习中心
| | | | | | | | | | | | | | | | | | | | | | | | |
经营许可证编号:京ICP备
版权所有:北京新东方教育科技(集团)有限公司
咨询电话:010-投诉电话:010-数学问题_百度知道}

我要回帖

更多关于 数学问题解答 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信