自从航天飞机退役以后,nasa是如何维修哈勃太空哈勃望远镜 电影的?

| &&&&&&&&&
当前位置:>> >>
NASA准备最后一次“哈勃”太空望远镜维修任务
    据NASA网站日报道,&发现&号航天飞机3月28日在佛罗里达州的肯尼迪航天中心安全降落后,NASA开始为实施下一项维修&哈勃&太空望远镜的任务做准备。任务工程师计划5月12日发射&亚特兰蒂斯&号航天飞机,开始实施为期11天的STS-125飞行任务,对&哈勃&太空望远镜进行检查、维修。这次飞行任务是由航天飞机执行的对&哈勃&太空望远镜的第5次维修任务,也是对其进行的最后一次维修任务。  STS-125任务指令长是经验丰富的航天员斯科特&奥特曼(Scott Altman)。航天员计划通过5次出舱活动,为&哈勃&望远镜安装新的照相机,更换回旋装置和电池,并增加一个对接环。  &亚特兰蒂斯&号航天飞机为了到达&哈勃&太空望远镜所在轨道,必须在一个与轨道碎片相撞风险较高的轨道上运行,与碎片相撞的可能性约为1/185。NASA的安全指标规定,航天器与空间碎片相撞的最大风险不能超过1/200,但是NASA官员表示,他们已经权衡了维修&哈勃&望远镜飞行任务的风险因素。  NASA已于3月31日把&亚特兰蒂斯&号航天飞机运往39A发射台。担任营救任务的&奋进&号航天飞机也已在39B发射台做好发射准备。如果&亚特兰蒂斯&号出现意外,无法把7名航天员安全送回地球,&奋进&号将会实施营救工作。NASA曾计划把国际空间站作为在救援到来之前航天飞机乘员的避难所。但是,由于&哈勃&望远镜与国际空间站位于不同的轨道高度和位置,航天员无法到达国际空间站。因此,NASA设计了新的可能营救方案,即让&奋进&号航天飞机在&亚特兰蒂斯&号航天飞机发射7天后进入发射准备状态。工程师将有充足时间评估飞行监视器提供的发射录像和相关信息,以判断&亚特兰蒂斯&号航天飞机是否在发射中遭受损坏。一旦出现问题,将立即发射&奋进&号航天飞机进行救援。 
(责任编辑:liaoxg921)
 |  | 
@中国载人航天工程网 版权所有 | 中国载人航天工程办公室 主 办哈勃空间望远镜有了“继承者”新一代太空望远镜带人类探寻来自星星的秘密<·青年时报
第A15版:新知
版面导航 | 标题导航 
哈勃空间望远镜有了“继承者”
新一代太空望远镜带人类探寻来自星星的秘密
一提到望远镜,特别是大的望远镜,我们的脑海中,浮现的便是如同大桶状的哈勃空间望远镜。从它升空至今,可谓战功显赫。然而,经过多次修补的哈勃空间望远镜,服役期限已不长。因而,它的继任者备受关注。&&据物理学家组织网2月4日报道,近日美国航空航天局(NASA)戈达德太空飞行中心,因为一位“重要客人”——近红外照相机的到来而愈发忙碌。它将和另外3台仪器共同组建成“继承者”詹姆斯·韦伯太空望远镜。据称,这一红外线太空观测设备,将成为人类有史以来观测能力最强的太空望远镜,让我们能管窥最遥远的宇宙,从而回答与早期宇宙、星系演变及是否存在外星生命等问题。&&□时报记者 毛晨怡&&太空望远镜“大变脸”&&“詹姆斯·韦伯”这个名字取自美国宇航局第二任局长詹姆斯·韦伯。在1961年至1968年,他担任NASA领导人时,美国的航天事业掀开新的篇章,其中包括探测月球和“阿波罗”登月计划等一系列美国重要的空间探测项目。因此,“詹姆斯·韦伯”一诞生,便寄托着人们的厚望,此项目曾经被称为“新一代太空望远镜”。&&在外形上,詹姆斯·韦伯太空望远镜与筒状的哈勃空间望远镜完全不同,它是一架没有镜筒的望远镜。它的主体并不呈筒状,而是在主镜下展开座席状的遮光板,其聚光部和镜面都露在外面,容易让人联想到射电望远镜的天线。据了解,它的口径是哈勃太空望远镜的三倍,但质量却只有哈勃太空望远镜的三分之一左右。&&据资料显示,詹姆斯·韦伯太空望远镜的主镜片直径约为6.5米,比哈勃太空望远镜的主镜片宽2.5倍。如此巨大的镜片,使得它能够探测到的物体可以比哈勃太空望远镜探测到的物体暗淡400倍。但由于没有哪个运载火箭的有效载荷整流罩宽到可以容纳如此硕大的镜片,詹姆斯·韦伯太空望远镜的镜片将由18块六角形分镜片组成,发射时分镜片将折叠起来。成功发射后,这些镜片会在高精度的微型马达和波面传感器的控制下展开。到达目的地后,一个大约有网球场大小的大型矩形太阳光遮光罩将缓缓展开,这时,就可以遮挡住来自太阳的热量,保护其零件。经过几个月的调整,就会开始观测任务。&&詹姆斯·韦伯太空望远镜将会被发射到距离地球150万千米的空间里,而正因为它离地球距离太遥远,没有办法像哈勃空间望远镜那样,派人上去维修。因此,詹姆斯·韦伯太空望远镜的质量要十分过硬,设计也要十分可靠才行。&&随身携带三台精密仪器&&詹姆斯·韦伯太空望远镜“随身”携带着三个法宝——一台近红外摄像机、一台近红外光谱摄制仪,以及一台组合式中红外摄像机与光谱摄制仪。今年1月底,詹姆斯·韦伯太空望远镜完成了2014年航天器关键设计评审,科学家们对它的供电系统、通讯系统及定位控制系统进行了审查,这是其生命历程中一个关键性的里程碑。而近红外照相机是最后到达戈达德太空飞行中心的零件,它的到来标志着组成韦伯太空望远镜的所有仪器全部“聚首”。&&詹姆斯·韦伯太空望远镜的18个小镜面,使用了来源于眼科手术的波前成像观测技术,将该技术用于望远镜,可以获得极佳的观测精度。这些小镜面采用了铍和金涂层,每个重约20公斤。由于红外波段的观测需要极为严苛的低温环境,因此,这些镜子必须能在零下240摄氏度的低温下工作。而据NASA局长查尔斯·博尔登解释称,每个小镜面上所安装的小型马达,可使得即使望远镜身处遥远的太空,科学家们也能对其进行调整。&&这台太空望远镜的另一个组成部分是中红外成像仪,它由10个欧洲国家携手完成。中红外成像仪(MIRI)在2012年就已到达戈达德太空飞行中心,目前已经被安装在詹姆斯·韦伯太空望远镜的仪器模块上,在最近进行的首轮低温测试中表现得毫无瑕疵。亚利桑那大学天文学和行星科学教授乔治·里埃克说:“MIRI将詹姆斯·韦伯太空望远镜的波长延伸至28微米,在这一范围内,太阳系系外行星、非常年轻的恒星以及组成星系的恒星都非常明亮。”&&调查宇宙的初期状态&&对于连续20多年全年无休、勤恳工作的哈勃太空望远镜来说,詹姆斯·韦伯太空望远镜的升空,能让它“长舒一口气”,然后“安度晚年”。但原本预计在2011年发射升空的詹姆斯·韦伯太空望远镜,因为制造等方面的原因,一再推迟,或在2018年才能发射升空。&&詹姆斯·韦伯太空望远镜是由欧洲空间局、NASA和加拿大航天局共同运作的。它的主要任务是调查作为大爆炸理论的残余红外线证据,即观测今天可见宇宙的初期状态。一旦组装完成,它收集光线的能力将是哈勃望远镜的7倍以上,将为我们提供与早期宇宙和其他星球上是否存在生命等问题有关的答案。&&该望远镜能够透过宇宙中的尘埃,看到宇宙最遥远的物体,包括最早的星系以及围绕在其他恒星周围的行星等。它能够用红外线为宇宙拍摄图像,并能将光分解成其组成颜色或光谱,这将帮助科学家们了解最遥远的物体由什么组成,以及它们运行的速度有多快。&&●解析&&带你见识哈勃和韦伯&&虞骏:果壳网主笔、天体物理专业出身&&问:哈勃空间望远镜目前是什么情况?&&虞骏:哈勃空间望远镜是在近地轨道上运行的,从它发射上去至今已经维修过多次,每次维修都要用航天飞机将相关人员送到太空,但现在美国已将航天飞机退役,并且,航天飞机每次的花费是一笔很大的开销,维修也是。现在哈勃空间望远镜已没法维修,也没有办法更新设备,一旦发生故障或者器件损坏,NASA也无能为力。&&&&问:詹姆斯·韦伯太空望远镜的观测波段主要是红外波段,而哈勃空间望远镜主要以光学为主,是这样么?&&虞骏:是的。当时哈勃空间望远镜的升空,主要是为了解决大气干扰的问题。我们的大气层看上去很通透,其实不然,大型空间望远镜如果装在地面上,在观测的时候会受到大气扰动的影响,从而影响观测效果。举个例子,夏天很热时,我们经常能看到一些“扭动景象”,特别是近地面或者是车子的引擎盖。其实大气层也是这样。如果把望远镜送到太空,就能避免这样的情况,天文学家在观测的时候就能得到更清晰、更好的观测效果。&&但是,随着技术的不断发展,现在地面上的大型望远镜也能够解决这个干扰问题,能够对观测结果进行修正,得到的分辨率可以媲美哈勃空间望远镜,有的甚至能超越它。因此如果再发射类似的空间望远镜是没有太大意义的。&&另外,以红外线为主要观测波段的詹姆斯·韦伯太空望远镜,能够观测到更远距离的天体、星系等。在宇宙学里有一个常见的名词叫做红移,它是指物体的电磁辐射由于某种原因波长增加的现象,在可见光波段,表现为光谱的谱线朝红端移动了一段距离,即波长变长、频率降低,这种现象目前多用于天体的移动及规律的预测上。尤其是距离很远的星系,所以用红外波段观测是有优势的。而且,哈勃空间望远镜的口径也更大,能够看到更暗的星系、天体。&&&&问:詹姆斯·韦伯太空望远镜的位置在第二拉格朗日点,这是什么意思?&&答:太空中的天体都是有引力的,在地球附近运动的小物体会受到地球的引力影响,在太阳附近运动的小物体,则也会受到太阳引力的影响。而当这个小物体处于某些特殊位置的时候,地球和太阳两者对它的引力会相互作用或相抵消,使这个小物体能处于一个相互对稳定的位置。这样特殊的位置一共有五个,叫做拉格朗日点,而詹姆斯·韦伯太空望远镜处于的那个位置,就叫第二拉格朗日点,简称L2。
合作伙伴:NASA两架航天飞机整装待发欲拯救哈勃望远镜
20:04原文出处:
据美国广播公司4月1日报道,今年下半年,美国宇航局将派出“亚特兰蒂斯”号航天飞机执行风险极大的哈勃太空望远镜维修任务。美国广播公司获得独家采访权,与宇航员、科学家和工程师进行了采访,了解到许多鲜为人知的内幕。&对哈勃来说,它的时间即将用完。如果不尽快给它更换电池和陀螺仪,这台最著名的将会停止运转。如果维修工作进展一切顺利的话,“亚特兰蒂斯”号任务,又被称作STS 125任务,将在8月发射升空,前去维修。在机组成员为了此次任务接受集训期间,美国广播公司记者将对他们进行跟踪采访。&这将是航天飞机最后一次去“看望”哈勃。参与这项任务的每一个人都清楚,他们必须争分夺秒,以确保哈勃太空望远镜在被韦伯望远镜取代以前,能继续探索宇宙奥秘。韦伯太空望远镜将在未来的10年内发射升空。&这次和最近的大部分航天飞机任务不一样,它将不会跟对接。如果“亚塔兰蒂斯”号航天飞机遇到紧急事件,哈勃望远镜的轨道距离非常远,该任务组的成员可能无法到达空间站。但是美国已经准备了一项空前的后援计划。当“亚特兰蒂斯”号的被发射升空,前去修复哈巴望远镜时,第二架航天飞机将在肯尼迪太空中心的另一个发射台上做好准备,一旦参与哈勃任务的成员遇到麻烦,在未来几天内相关人员会随时发射这架航天飞机。&从中不难看出,为什么维修哈勃是本年度谈论最多的任务,这项任务甚至让国际空间站的扩建任务都黯然失色。哈勃是一台可以探索宇宙过去的望远镜,但空间站虽然是有史以来最复杂的任务之一,但是目前它还在建设当中。&那么,哈勃太空望远镜具有哪些国际空间站没有的吸引力呢?“7”任务组宇航员沃尔特·康尼翰表示:“虽然国际空间站是历史上最令人难以置信的成就,它甚至超越了运河和金字塔,但是它无法吸引公众的好奇心,因为它看起来就像一辆往返运输的卡车。”&1990年,哈勃望远镜被发射到太空,但是它并没有立即产生轰动效应。因为哈勃望远镜的主镜形状不精确,这个令人难以置信的缺陷导致它发回的第一批图像非常模糊。1993年,相关人员进行了一次大胆的航天飞机任务,为它安装了经过校正的镜头。据加利福尼亚大学圣克鲁兹分校的桑德拉·法伯说,这种麻烦的开端是哈勃望远镜神秘性的一部分。她说:“这是个灾难,但是它就像栗色马在最后一刻反败为胜一样。最终它成为美国人最喜欢的故事。”&哈勃取得的成绩令人惊叹:在它的帮助下,估算出宇宙已经有140亿岁。法伯指出,哈勃发现了星系的形成过程。“对我来说,最重要的是研究星系形成。哈勃是第一个能回视过去,展示婴儿期(在出生过程中)星系的望远镜。这也是首次将望远镜作为时光机器,回溯到数十亿年前,这是一笔非常重要的遗产。”&哈勃太空望远镜项目的主管马特·茫特恩表示,人们很容易解释这台望远镜的崇高威望得来的原因。他说:“它让我们以我们不必解释的方式观察宇宙。一张照片的价值相当于1000字,它让我们回到过去,看到了早期星系。它发回来的是早期星系的惊人图片。我们不能将科学与这些图片脱离开来,因为这些图片的科学意义很强,公众在观看这些图片的同时,实际上已经参与了进来。”&史蒂夫·哈韦雷是布置哈勃望远镜的宇航员之一。他还是一名家,他认为自己清楚为什么有那么多人与哈勃产生了共鸣。“这些照片都非常惊人;这些都令人难以置信。在飞机上我和一些人坐在一起,他们会问我是干什么的,当我说是在美国宇航局工作时,他们会说:‘哦!美国宇航局。’他们可能错误地认为航天飞机可飞到月球,会错误地认为我们从休斯顿发射升空,但他们对哈勃的情况非常了解。”
其他网友还关注过:
美国宇航局科学家最新研制一种类似折纸的太阳能板,原始直径2.7米,展开之后直径达到25米据国外媒体报道,在太空中部署较大的设备并非易事,将重量1公斤的物体发送至太空轨道成本大约23400美元,这是非常......
据中国国防科技信息网报道,为了满足未来零件能在空间按需制造的需求,美国航空航天局(NASA)宣布了向国际空间站发射首个3D微重力打印实验设备计划。与位于加利福尼亚州的空间制造公司合作,NASA将于20......
人类未来能否在月球上生活?科学家打算先尝试在月球上种菜。据英国《每日邮报》网站12月1日报道,美国国家航空航天局(NASA)决定在2015年去月球上种植蔬菜和草本植物,以此来测试月球是否适合人类生存。......
&这是人类自从掌握了空间技术开始就拥有的一个梦想,无论你叫它“太空农场”还是“宇宙农业基地”,现在都要成为现实了。据英国《每日邮报》在线版9月11日消息称,美国宇航局(NASA)计划在今年年......
据英国《每日邮报》在线版8月25日报道,美国国家航空航天局(NASA)近期向公众披露了该局备受关注的小行星登陆项目之具体细节,并以鲜明易懂的动画形式予以展示。该项目大致流程稍早时间已为公众所知,本次展......
美国众议院正在考虑NASA重新授权法案,期望美国在月球上建立基地。图片来源:NASA/BehnazFarahi/ConnorWingfield&美国总统巴拉克·奥巴马就职一年之后,政府和国会......
美国航天局12月12日宣布,天文学家借助哈勃太空望远镜发现了一批在宇宙初期诞生的星系,其中“年龄”最大的星系约为133亿岁,可能是迄今已知最古老星系之一。今年8月至9月间,美国加州理工学院理查德·埃利......
应电子学研究所微波成像技术国家重点实验室的邀请,美国航空航天局(NASA)AntonyLiu博士于9月21日来所进行海洋遥感专题学术交流。交流期间,AntonyLiu博士分别作了题为CoastWatc......
据物理学家组织网7月18日报道,天文学家18日宣布,他们用哈勃望远镜首次探测到一个宇宙早期形成的螺旋星系,距今约107亿年,比其他许多螺旋星系早了几十亿年。研究人员表示,这一发现促使人们重新思考大爆炸......
据澳大利亚《每日电讯报》7月12日报道,美国科学家宣布,他们利用哈勃太空望远镜发现了冥王星的第五颗卫星,它也是至今发现的最小的冥王星卫星。新发现的这颗卫星被成为P5,现在还没有正式名称,通过哈勃望远镜......
相关产品仪器相关实验室实验室“哈勃”太空望远镜是在哪一年发射升空的?
“哈勃”太空望远镜是在哪一年发射升空的?
09-01-18 & 发布
请登录后再发表评论!
哈勃空间望远镜(Hubble Space Telescope,HST),是人类第一座太空望远镜,总长度超过13米,质量为11吨多,运行在地球大气层外缘离地面约600公里的轨道上。它大约每100分钟环绕地球一周。哈勃望远镜是由美国国家航空航天局和欧洲航天局合作,于1990年发射入轨的。哈勃望远镜是以天文学家爱德文·哈勃的名字命名的。按计划,它将在2009年被詹姆斯韦伯太空望远镜所取代。哈勃望远镜的角分辨率达到小于 0.1秒,每天可以获取3到5G字节的数据。 由于运行在外层空间,哈勃望远镜获得的图像不受大气层扰动折射的影响,并且可以获得通常被大气层吸收的红外光谱的图像。 哈勃望远镜的数据由太空望远镜研究所的天文学家和科学家分析处理。该研究所属于位于美国马里兰州巴尔第摩市的约翰霍普金斯大学。
请登录后再发表评论!
哈勃空间望远镜(Hubble Space Telescope,HST),是人类第一座太空望远镜,总长度超过13米,质量为11吨多,运行在地球大气层外缘离地面约600公里的轨道上。它大约每100分钟环绕地球一周。哈勃望远镜是由美国国家航空航天局和欧洲航天局合作,于1990年发射入轨的。哈勃望远镜是以天文学家爱德文·哈勃的名字命名的。按计划,它将在2009年被詹姆斯韦伯太空望远镜所取代。哈勃望远镜的角分辨率达到小于 0.1秒,每天可以获取3到5G字节的数据。 由于运行在外层空间,哈勃望远镜获得的图像不受大气层扰动折射的影响,并且可以获得通常被大气层吸收的红外光谱的图像。 哈勃望远镜的数据由太空望远镜研究所的天文学家和科学家分析处理。该研究所属于位于美国马里兰州巴尔第摩市的约翰霍普金斯大学。
请登录后再发表评论!
勃空间望远镜(Hubble Space Telescope,缩写为HST),是以天文学家爱德温·哈勃(Edwin Powell Hubble)为名,在轨道上环绕着地球的望远镜。它的位置在地球的大气层之上,因此获得了地基望远镜所没有的好处-影像不会受到大气湍流的扰动,视相度绝佳又没有大气散射造成的背景光,还能观测会被臭氧层吸收的紫外线。于1990年发射之后,已经成为天文史上最重要的仪器。它已经填补了地面观测的缺口,帮助天文学家解决了许多根本上的问题,对天文物理有更多的认识。哈勃的哈勃超深空视场是天文学家曾获得的最深入(最敏锐的)的光学影像。从它于1946年的原始构想开始,直到发射为止,建造空间望远镜的计划不断的被延迟和受到预算问题的困扰。在它发射之后,立即发现主镜有球面像差,严重的降低了望远镜的观测能力。幸好在1993年的维修任务之后,望远镜恢复了计划中的品质,并且成为天文学研究和推展公共关系最重要的工具。哈勃空间望远镜和康普顿γ射线天文台、钱卓X光天文台、斯必泽空间望远镜都是美国宇航局大型轨道天文台计划的一部分[1] 。哈勃空间望远镜由NASA和ESO合作共同管理。哈勃的未来依靠后续的维修任务是否成功,维持稳定的几个陀螺仪已经损坏,目前(2007年),连备用的也已经耗尽,而且另一架用于指向的望远镜功能也在衰减中。陀螺仪必须要以人工进行维修,在日,主要的先进巡天照相机(ACS)也停止工作,在执行人工维修之前,只有超紫外线的频道能够使用。另一方面,如果没有再提升来增加轨道高度,阻力会迫使望远镜在2010年重返大气层。自从2003年航天飞机哥伦比亚不幸事件之后,由于国际太空站和哈勃不在相同的高度上,使得太空人在紧急状况下缺乏安全的避难场所,因而NASA认为以载人太空任务去维修哈勃望远镜是不合情理的危险任务。NASA在从新检讨之后,执行长麦克格里芬在日决定以亚特兰大进行最后一次的哈勃维修任务,任务的时间安排在日, [2] 基于安全上的考量,届时将会让发现号在LC-39B发射台上待命,以便在紧急情况时能提供救援。计划中的维修将能让哈勃空间望远镜持续工作至2013年。如果成功了,后继的詹姆斯·韦伯空间望远镜(JWST)应该已经发射升空,可以衔接得上任务了。韦伯空间望远镜在许多研究计划上的功能都远超过哈勃,但将只观测红外线,因此在光谱的可见光和紫外线领域内无法取代哈勃的功能。概念、设计和目标规划设计和准备工作哈勃空间望远镜的历史可以追溯至1946年天文学家莱曼·斯必泽(Lyman Spitzer, Jr.)所提出的论文:《在地球之外的天文观测优势》。在文中,他指出在太空中的天文台有两项优于地面天文台的性能。首先,角分辨率(物体能被清楚分辨的最小分离角度)的极限将只受限于衍射,而不是由造成星光闪烁、动荡不安的大气所造成的视象度。在当时,以地面为基地的望远镜解析力只有0.5-1.0弧秒,相较下,只要口径2.5米的望远镜就能达到理论上衍射的极限值0.1弧秒。其次,在太空中的望远镜可以观测被大气层吸收殆尽的红外线和紫外线。斯必泽以空间望远镜为事业,致力于空间望远镜的推展。在1962年,美国国家科学院在一份报告中推荐空间望远镜做为发展太空计划的一部分,在1965年,斯必泽被任命为一个科学委员会的主任委员,该委员会的目的就是建造一架空间望远镜。在第二次世界大战时,科学家利用发展火箭技术的同时,曾经小规模的尝试过以太空为基地的天文学。在1946年,首度观察到了太阳的紫外线光谱。英国在1962年发射了太阳望远镜放置在轨道上,做为亚利安太空计划的一部分。1966年NASA进行了第一个轨道天文台(OAO)任务,但第一个OAO的电池在三天后就失效,中止了这项任务了。第二个OAO在年对恒星和星系进行了紫外线的观测,比原先的计划多工作了一年的时间。轨道天文台任务展示了以太空为基地的天文台在天文学上扮演的重要角色,因此在1968年NASA确定了在太空中建造直径3米反射望远镜的计划,当时暂时的名称是大型轨道望远镜或大型空间望远镜(LST),预计在1979年发射。这个计划强调须要有人进入太空进行维护,才能确保这个所费不贷的计划能够延续够长的工作时间;并且同步发展可以重复使用的航天飞机技术,才能使前项计划成为可行的计划。资金需求轨道天文台计划的成功,鼓舞了越来越强的公众与论支持大型空间望远镜应该是天文学领域内重要的目标。在1970年NASA设立了两个委员会,一个规划空间望远镜的工程,另一个研究空间望远镜任务的科学目标。在这之后,NASA下一个需要排除的障碍就是资金的问题,因为这比任何一个地面上的天文台所耗费的资金都要庞大许多倍。美国的国会对空间望远镜的预算需求提出了许多的质疑,为了与裁军所需要的预算对抗,当时就详细的列出了望远镜的硬件需求以及后续发展所需要的仪器。在1974年,在裁减政府开支的鼓动下,杰拉尔德福特剔除了所有进行空间望远镜的预算。为回应此,天文学家协调了全国性的游说努力。许多天文学家亲自前往拜会众议员和参议员,并且进行了大规模的信件和文字宣传。国家科学院出版的报告也强调空间望远镜的重要性,最后参议院决议恢复原先被国会删除的一半预算。资金的缩减导致目标项目的减少,镜片的口径也由3米缩为2.4米,以降低成本和更有效与紧密的配置望远镜的硬件。原先计划做为先期测试,放置在卫星上的1.5米空间望远镜也被取消了,对预算表示关切的欧洲航天局也成为共同合作的伙伴。欧洲航天局同意提供经费和一些望远镜上需要的仪器,像是做为动力来源的太阳能电池,回馈的是欧洲的天文学家可以使用不少于15%的望远镜观测时间。在1978年,美国国会拨付了36,000,000C元美金,让大型空间望远镜开始设计,并计划在1983年发射升空。在1980年初,望远镜被命为哈勃,以纪念在20世纪初期发现宇宙膨胀的天文学家艾德温·哈勃。设计与制造空间望远镜的计划一经批准,计划就被分割成许多子计划分送各机关执行。 马歇尔太空飞行中心(MSFC)负责设计、发展和建造望远镜,金石太空飞行中心(GSFC)负责科学仪器的整体控制和地面的任务控制中心。马歇尔太空飞行中心委托珀金埃尔默设计和制造空间望远镜的光学组件,还有精密定位传感器(FGS),洛克希德被委托建造安装望远镜的太空船。光学望远镜的组合安装(OTA)望远镜的镜子和光学系统是最关键的部分,因此在设计上有很严格的规范。一般的望远镜,镜子在抛光之后的准确性大约是可见光波长的十分之一,但是因为空间望远镜观测的范围是从紫外线到近红外线,所以需要比以前的望远镜更高十倍的解析力,它的镜子在抛光后的准确性达到可见光波长的廿分之一,也就是大约30 纳米。珀金埃尔默刻意使用极端复杂的电脑控制抛光机研磨镜子,但却在最尖端的技术上出了问题;柯达被委托使用传统的抛光技术制做一个备用的镜子(柯达的这面镜子现在永久保存在史密松宁学会)。1979年,珀金埃尔默开始磨制镜片,使用的是超低膨胀玻璃,为了将镜子的重量降至最低,采用蜂窝格子,只有表面和底面各一吋是厚实的玻璃。镜子的抛光从1979年开始持续到1981年5月,抛光的进度已经落后并且超过了预算,这时NASA的报告才开始对珀金埃尔默的管理结构质疑。为了节约经费,NASA停止支援镜片的制作,并且将发射日期延后至1984年10月。镜片在1981年底全部完成,并且镀上了75 nm厚的铝增强反射,和25 nm厚的镁氟保护层。因为在光学望远镜组合上的预算持续膨胀,进度也落后的情况下,对珀金埃尔默能否胜任后续工作的质疑继续存在。为了回应被描述成&未定案和善变的日报表&, NASA将发射的日期再延至1985年的4月。但是,珀金埃尔默的进度持续的每季增加一个月的速率恶化中,时间上的延迟也达到每个工作天都在持续落后中。NASA被迫延后发射日期,先延至1986年3月,然后又延至1986年9月。这时整个计划的总花费已经高达美金11亿7500万。太空平台系统安置望远镜和仪器的太空船是主要工程上的另一个挑战。它必须能胜任与抵挡在阳光与地球的阴影之间频繁进出所造成的温度变化,还要极端的稳定并能长间的将望远镜精确的对准目标。以多层绝缘材料制成的遮蔽物能使望远镜内部的温度保持稳定,并且以轻质的铝壳包围住望远镜和仪器的支架。在外壳之内,石墨环氧的框架将校准好的工作仪器牢固的固定住。有一段时间用于安置仪器和望远镜的太空船在建造上比光学望远镜的组合来得顺利,但洛克希德仍然经历了预算不足和进度的落后,在1985年的夏天之前,太空船的进度落后了个月,而预算超出了30%。马歇尔太空飞行中心的报告认为洛克希德在太空船的建造上没有采取主动,而且过度依赖NASA的指导。地面支持在1983年,空间望远镜科学协会(STScI)在经历NASA与科学界之间的权力争夺后成立。空间望远镜科学协会隶属于美国大学天文研究联盟 (AURA),这是由32个美国大学和7个国际会员组成的单位,总部坐落在马里兰州巴尔地摩的约翰·霍普金斯大学校园内。空间望远镜科学协会负责空间望远镜的操作和将数据交付给天文学家。美国国家航空航天局(NASA)想将之做为内部的组织,但是科学家依据科学界的做法将之规划创立成研究单位,由NASA位在马里兰州绿堤,空间望远镜科学协会南方48公里,的哥达德太空飞行中心和承包厂商提供工程上的支援。哈勃望远镜每天24小时不间断的运作,由四个工作团队轮流负责操作。空间望远镜欧洲协调机构于1984年设立在德国邻近慕尼黑的Garching bei München,为欧洲的天文学家提供相似的支援。挑战者号爆炸事故早在1986年,就已经计划在当年10月份发射哈勃空间望远镜。但是挑战者号的事故使美国的太空计划停滞不前,航天飞机的暂停升空,迫使哈勃空间望远镜的发射延迟了数年。望远镜和所有的附件都必须分门别类的储藏在无尘室内,直到能够排出发射的日期,这也使得已经超支的总成本更为高涨。最后,随着航天飞机在1988年再度开始升空,望远镜也预定在1990年发射。在发射前的最后准备,用氮气喷射镜面以除去可能累积的灰尘,并且对所有的系统进行广泛的测试。终于,在日由发现号航天飞机,于STS-31航次将望远镜成功的送入计划中的轨道。从它原始的总预算,大约4亿美金,到现在的花费超过25亿美金,哈伯的成本依然在不断的累积与增高。美国政府估计的开销将高达45至60亿美金,欧洲所挹注的资金也高达6亿欧元(1999年的估计)。仪器在发射时,哈勃空间望远镜携带的仪器如下:广域和行星照相机(WF/PC) 戈达德高解析摄谱仪(GHRS) 高速光度计(HSP)) 暗天体照相机(FOC) 暗天体摄谱仪(FOS) WF/PC原先计划是光学观测使用的高分辨率照相机。由NASA的喷射推进实验室制造,附有一套由48片光学滤镜组成,可以筛选特殊的波段进行天体物理学的观察。整套仪器使用8片CCD,做出了两架照相机,每一架使用4片CCD。&广域照相机&(WFC)因为视野较广,在解像力上有所损失,而&行星照相机&(PC)以比WFC长的焦距成像,所以有较高的放大率。GHRS是被设计在紫外线波段使用的摄谱仪,由哥达德太空中心制造,可以达到90,000的光谱分辨率[7],同时也为FOC和FOS选择适宜观测的目标。FOC和FOS都是哈勃空间望远镜上分辨率最高的仪器。这三个仪器都舍弃了CCD,使用数位光子计数器做为检测装置。FOC是由欧洲航天局制造, FOS 则由Martin Marietta公司制造。最后一件仪器是由威斯康辛麦迪逊大学设计制造的HSP,它用于在可见光和紫外光的波段上观测变星,和其他被筛选出的天体在亮度上的变化。它的光度计每秒钟可以侦测100,000次,精确度至少可以达到2%。哈勃空间望远镜的导引系统也可以做为科学仪器,它的三个精细导星传感器(FGS)在观测期间主要用于保持望远镜指向的准确性, 但也能用于进行非常准确的天体测量,测量的精确度达到 0.0003弧秒。镜片的瑕疵在望远镜发射数星期之后,传回来的图片显示在光学系统上有严重的问题。虽然,第一张图像看起来比地基望远镜的明锐,但望远镜显然没有达到最佳的聚焦状态,获得的最佳图像品质也远低于当初的期望。点源的影像被扩散成超过一弧秒半径的圆,而不是在设计准则中的标准:集中在直径0.1 弧秒之内,有同心圆的点弥漫函数图像。更详细的资料可以参考[2]以mis-图显示的PSF图表,和地基观测比较的PSF图表。对图样缺陷的分析显示,问题的根源在主镜的形状被磨错了。虽然,这个差异小于光的1/20波长,只是在边缘太平了一点。镜面与需要的位置只差了微不足道的2微米,但这个差别造成的是灾难性的、严重的球面像差。来自镜面边缘的反射光,不能聚集在与中央的反射光相同的焦点上。镜子的瑕疵造成的作用是在科学观察的核心观测上,核心像差的PSF要足够的明锐到足以进行高解析的分辨,但对明亮的天体和光谱分析是不受影响的。虽然,在外围损失大片的光因为不能汇聚在焦点上而造成晕像,严重的减损了望远镜观察暗天体或高反差的影像的能力。这意味着几乎所有对宇宙学的研究计划都不能执行,因为她们都是非常暗弱的观测对象。美国国家航空航天局和哈勃空间望远镜成为许多笑话的箭靶,并且被认为是大白象(花费大而无用的东西)。问题的根源从点源的图像往回追溯,天文学家确定镜面的圆锥常数是-1.0139,而不是原先期望的- 1.00229。通过分析珀金埃尔默的零校正器(精确测量抛光曲面的仪器)和分析在地面测试镜子的干涉图影像,也获得了相同的数值。由喷射推进实验室主任,亚伦领导的委员会,确定了错误是如何发生的。亚伦委员会发现珀金埃尔默使用的零校正器在装配上发生了错误,它的向场透镜位置偏差了1.3 mm。在抛光镜子的期间,珀金埃尔默使用另外二架零校正器,两者都(正确的)显示镜子有球面像差。这些测试都是会确实消除球面像差而设计的,不顾品管文件的指导,公司认为这二架零校正器的精确度不如主要的设备,而忽略了测试的结果。委员会指出失败的主因是珀金埃尔默。由于进度表频繁更动造成的损耗和望远镜制造费用的超支,造成了在美国航空暨太空总署和光学公司之间的关系极度的紧张。美国航空暨太空总署发现珀金埃尔默并不认为镜子的制做在他们的业务中是关键性的困难工作,而美国航空暨太空总署也未能在抛光之前善尽本身的职责。在委员会沉痛的批评珀金埃尔默在管理上的不当与缺失的同时,美国航空暨太空总署也被非议未善尽品管的责任,与不该只依赖维一一架仪器的测试结果。解决方案在望远镜的设计中原本就规画了维修的任务,所以天文学家立刻就开始寻找可以在1993年,预定进行第一次维修任务时解决问题的方案。以柯达为哈勃制作的备用镜,在轨道上进行更换是太昂贵和耗费时间,临时要将望远镜带回地面上修理也不可能。取而代之的,镜片错误的形状已经被精确的测量出来,因此可以设计一个有相同的球面像差,但功效相反的光学系统来抵消错误。也就是在第一次的维修任务中为哈伯配上一副能改正球面像差的眼镜。由于原本仪器的设计方式,必须要两套不同的校正仪器。广域和行星照相机的设计包括转动的镜片和直接进入两架照相机的8片独立CCD芯片的光线,可以用一个反球面像差的镜片完全的消除掉它们表面上的主要变形。修正镜被固定在替换的第二代广域和行星照相机内(由于进度和预算的压力,只修正4片CCD而不是8片)。但是,其他的仪器就缺乏任何可以安置的中间表面,因此必须要一个外加的修正装置。COSTAR设计用来改正球面像差的仪器称为&空间望远镜光轴补偿校正光学(COSTAR)&,基本上包含两个在光路上的镜子,其中一个将球面像差校正过来,光线被聚焦给暗天体照相机、暗天体光谱仪和高达德高解析摄谱仪。为了提供COSTAR在望远镜内所需要的位置,必须移除其中一件仪器,天文学家的选择是牺牲高速光度计。在哈勃任务的前三年期间,在光学系统被修正到合适之前,望远镜依然执行了大量的观测。光谱的观测未受到球面像差的影响,但是许多暗弱天体的观测因为望远镜的表现不佳而被取消或延后。尽管受到了挫折,乐观的天文学家在这三年内熟练的运用影像处理技术,例如反折绩(影像重叠)得到许多科学上的进展。维护任务和新仪器第一次维护任务在设计上,哈勃空间望远镜必须定期的进行维护,但是在镜子的问题明朗化之后,第一次的维护就变得非常重要,因为太空人必须全面性的进行望远镜光学系统安装和校正的工作。被选择执行任务的七位太空人,接受近百种被专门设计的工具使用的密集训练。由奋进号在1993年12月的STS-61航次中,于10天之中重新安装了几件仪器和其他的设备。最重要的是以COSTAR修正光学组件取代了高速光度计,和广域和行星照相机由第二代广域和行星照相机与内部的光学更新系统取代。另外,太阳能板和驱动的电子设备、四个用于望远镜定位的陀螺仪、二个控制盘、二个磁力计和其他的电子组件也被更换。望远镜上携带的计算机也被更新升级,由于高层稀薄的大气仍有阻力,在三年内逐渐衰减的轨道也被提高了。在1994年的1月13日,美国国家航空航天局宣布任务获得完全的成功,并显示出许多新的图片。这次承担的任务非常复杂,共进行了五次航天飞机船舱外的活动,它的回响除了对美国国家航空航天局给予极高的评价外,也带给天文学家一架可以充分胜任太空任务的望远镜。后续的维修任务没有如此的戏剧化,但每一次都给哈勃空间望远镜带来了新的能力。第二次维护任务第二次维护任务由发现号在1997年2月的STS-82航次中执行,以空间望远镜影像摄谱仪(STIS)和近红外线照相机和多目标分光仪(NICMOS)替换掉戈达德高解析摄谱仪(GHRS)和暗天体摄谱仪(FOS);以一台新的固态记录器替换工程与科学录音机,修护了绝热毯和再提升哈勃的轨道。近红外线照相机和多目标分光仪包含由固态氮做成的吸热器以减少来自仪器的热噪声,但在安装之后,部分来自吸热器的热扩散却意料之外的进入光学挡板,这额外增加的热量导致仪器的寿命由原先期望的4.5年缩短为2年。第三次维护任务(3A)在六台陀螺仪中的三台故障之后(第4台在任务之前几个星期故障,使望远镜不能胜任执行科学观察),第三次维护任务仍然由发现号在1999年12月的STS-103航次中执行。在这次维护中更换了全部的六台陀螺仪,也更换了一个精细导星传感器和计算机,安装一套组装好的电压/温度改善工具(VIK)以防止电池的过热,并且更换绝热的毯子。新的计算器是能在低温辐射下运作的英特尔486,可以执行一些过去必须在地面处理的与太空船有关的计算工作。第四次维护任务(3B)第四次维护任务由哥伦比亚号在2002年3月的STS-109航次中执行,以先进巡天照相机(ACS)替换了暗天体照相机(FOC),并且查看了冷却剂已经在1999年耗尽的近红外线照相机和多目标分光仪(NICMOS)。更换了新的冷却系统之后,虽然还不能达到原先设计时预期的低温,但已经冷到足以继续工作了。[16]在这次任务中再度更换了太阳能板。新的太阳能板是为铱卫星发展出来的,大小只有原来的三分之二,除了可以有效的减少稀薄大气层带来的阻力,还能多供应30%的动力。这多出来的动力使得哈勃空间望远镜上所有的仪器可以同时运作,并且因为较为柔软,还消除了老旧的太阳能板因为进出阳光照射区域会产生震动的问题。为了改正继电器迟滞的问题,哈勃的配电系统也被更新了。这是哈勃空间望远镜升空之后,首度能完全的应用所获得的电力。其中影响最大的两架仪器,先进巡天照相机和近红外线照相机和多目标分光仪,在年间共同完成了哈勃超深空视场。最近的维护任务最近一次的哈勃维修任务原本安排在2008年8月,太空人将更换新的电池和陀螺仪。更换精细导星传感器(FGS)并修理空间望远镜影像摄谱仪(STIS)。他们也会安装二架新的仪器:宇宙起源频谱仪和第三代广域照相机,但是可能不会重置或替换先进巡天照相机。然而美国国家航空航天局于2008年9月宣布哈勃空间望远镜上的数据处理系统出现严重故障,无法正常存储观测数据并传回地球,而且哈勃太空任务高度与国际太空站距离十分远,太空人在紧急情况下未能找到有效安全避难处,这使得维护哈勃望远镜变为一项极度危险的任务。经过美国国家航空航天局考虑后,因此原定的维修任务将推迟于2009年5月进行。更会以另一艘航天飞机于发射台待命以为安全之计。而这将会是哈勃空间望远镜最后一次的维护任务,会将哈勃空间望远镜的寿命延长至2013年。让将于2011年发射的詹姆斯韦布空间望远镜能接续哈勃空间望远镜的天文任务。但若任务失败的话,哈勃空间望远镜将于2010年坠入大气层报销。科学上的成就重要的发现哈勃帮助解决了一些长期困扰天文学家的问题,而且导出了新的整体理论来解释这些结果。哈勃的众多主要任务之一是要比以前更准确的的测量出造父变星的距离,这可以让我们更加准确的定出哈勃常数的数值范围,这样才能对宇宙的扩张速率和年龄有更正确的认知。在哈勃升空之前,哈勃常数在统计上的误差估计是50%,但在哈勃重新测量出室女座星系团和其他遥远星系团内的造父变星距离后,提供的测量值准确率可以在10%之内。这与哈勃发射之后以其他更可靠的技术测量出来的结果是一致的。哈勃也被用来改善宇宙年龄的估计,宇宙的未来也是被质疑的问题之一。来自高红移超新星搜寻小组和超新星宇宙论计划的天文学家使用望远镜观察遥远距离外的超新星,发现宇宙的膨胀也许实际上是在加速中。这个加速已经被哈勃和其他地基望远镜的观测证实,但加速的原因目前还很难以理解。由哈勃提供的高解析光谱和影像很明确的证实了盛行的黑洞存在于星系核中的学说。在60年代初期,黑洞将在某些星系的核心被发现还只是一种假说,在80年代才鉴定出一些星系核心可能是黑洞候选者的工作,哈勃的工作却使得星系的核心是黑洞成为一种普遍和共同的认知。哈勃的计划在未来将着重于星系核心黑洞质量和星系本质的紧密关联上,哈勃对星系中黑洞的研究将在星系的发展和中心黑洞的关连上产生深刻与长远的影响。休梅克-李维9号彗星在1994年撞击木星对天文学家是一件很意外的事,幸运的事发生在哈勃完成第一次维护修好光学系统之后的几个月。因此,哈勃所获的的影像是自从1979年航海家二号飞掠木星之后最为清晰的影像,并且很幸运的对估计数个世纪才会发生一次的彗星碰撞木星的动力学事件,提供了关键性的学习机会。它也被用来研究太阳系外围的天体,包括矮行星冥王星和厄里斯。参考着作《最后的哈勃望远镜──记录永恒的宇宙遗产》野本阳代 著,张慧华 译,台湾世茂出版社日初版,ISBN
《从哈勃看宇宙》卡洛琳?皮特森、约翰?布兰特/著,魏毓莹、林诗怡、吴昌任译,台湾猫头鹰出版社2000年9月初版,ISBN
《从哈勃看宇宙》卡洛琳?皮特森、约翰?布兰特/著,魏毓莹、林诗怡、吴昌任译,海南出版社2004年1月初版,ISBN 7- 《宇宙之美尽在哈勃》野本阳代 著,张慧华 译,台湾世茂出版社日初版,ISBN
《从哈勃空间望远镜看宇宙》野本阳代,罗勃?威廉斯 著,张惠华 译,台湾世茂出版社日初版,ISBN
参考文献NASA&#39;s Great Observatories.NASA.于日查阅. Boyle, Alan.《NASA gives green light to Hubble rescue》,MSNBC,日.于日查阅. &#160;Spitzer, Lyman S (1979), &History of the Space Telescope&, Quarterly Journal of the Royal Astronomical Society, v. 20, p. 29 4.0 4.1 4.2 Dunar A.J., Waring S.P. (1999), Power To Explore—History of Marshall Space Flight Center , U.S. Government Printing Office, ISBN 0-16- (Chapter 12, Hubble Space telescope: [1]) HUBBLE SPACE TELESCOPE STAND-IN GETS STARRING ROLE. September 21, 2001.
The European Homepage for the NASA/ESA Hubble Space Telescope - Frequently Asked Questions.于日查阅. Brandt J.C. et al (1994), &The Goddard High Resolution Spectrograph: Instrument, goals, and science results&, Publications of the Astronomical Society of the Pacific, v. 106, p. 890–908 Bless R.C., Walter L.E., White R.L. (1992), High Speed Photometer Instrument Handbook, v 3.0, STSci Benedict, G. F McArthur, Barbara E. (2005), High-precision stellar parallaxes from Hubble Space Telescope fine guidance sensors, Transits of Venus: New Views of the Solar System and Galaxy, Proceedings of IAU Colloquium #196, Ed. D.W. Kurtz. Cambridge University Press, p.333-346 Burrows C.J. et al (1991), The imaging performance of the Hubble Space Telescope, Astrophysical Journal, v.369, p.21 哈伯空间望远镜光学系统失误报告,1990年,主席楼亚伦的美国国家航空航天局技术报告:NASA-TM-103443。以雷射测量在零膨胀钢棒末端的检测器向场透镜在空间中位置时,并未照射到钢棒的末端,雷射被投射在一个错误的斑点上,一个安置在钢棒末端,为了确认钢棒中心位置(可通过在螺帽中的一个孔看见)经过阳极处理的黑色螺帽上。执行测试的技术员注意到在向场透镜和它的支撑结构间有一个使用普通的金属垫圈填补之处,造成了意料之外的空隙。 Selected Documents in the History of the U.S. Civil Space Program Volume V: Exploring the Cosmos, (2001), John M. Logsdon, Editor 很幸运的是照相机采用这种方法制造,平面镜可以在光路的任何位置上插入,但要消除主镜球面像差的镜片,只能在影像与望远镜光瞳共轭的特定位置上置入。 Jedrzejewski R.I., Hartig G., Jakobsen P., Crocker J.H., Ford H. C. (1994), &In-orbit performance of the COSTAR-corrected Faint Object Camera&, Astrophysical Journal Letters, v. 435, p. L7–L10 Trauger J.T., Ballester G.E., Burrows C.J., Casertano S., Clarke J.T., Crisp D. (1994), The on-orbit performance of WFPC2, Astrophysical Journal Letters, v. 435, p. L3-L6 STSci NICMOS pages
请登录后再发表评论!
根据美国NASA太空资料显示哈勃空间望远镜(Hubble Space Telescope,HST),是人类第一座太空望远镜,总长度超过13米,质量为11吨多,运行在地球大气层外缘离地面约600公里的轨道上。它大约每100分钟环绕地球一周。哈勃望远镜是由美国国家航空航天局和欧洲航天局合作,于1990年发射入轨的。哈勃望远镜是以天文学家爱德文·哈勃的名字命名的。按计划,它将在2009年被詹姆斯韦伯太空望远镜所取代。哈勃望远镜的角分辨率达到小于 0.1秒,每天可以获取3到5G字节的数据。 由于运行在外层空间,哈勃望远镜获得的图像不受大气层扰动折射的影响,并且可以获得通常被大气层吸收的红外光谱的图像。 哈勃望远镜的数据由太空望远镜研究所的天文学家和科学家分析处理。该研究所属于位于美国马里兰州巴尔第摩市的约翰霍普金斯大学。
请登录后再发表评论!
请登录后再发表评论!
-&镜体内含高纯度氮气,所有产品经过1米深15分钟防水实验,专业防水、防雾,适用于恶劣多变的户外环境;-&21.5mm长出瞳,旋升式眼罩,观看舒适,适合戴眼镜者使用;-&消色差物镜,双胶合目镜,色彩还原逼真;-&FMC全面多层宽带镀膜,成像清晰、亮丽;-&采用高精度屋脊棱镜系统,重量轻,结构紧凑;-&望远镜内部进行多重特殊工艺消光处理,避免杂散光线干扰;-&全金属包胶,中央调焦,手感舒适,使用方便;-&流畅外观,现代动感设计。=============================================================================================我在淘宝买的&真的很不错&贴出来和大家分享&&喜欢旅游的可以看看&【把链接复制到地址栏打开】专柜正品立可达nikula&w90842-5防水望远镜超清晰&可视频看货&/comm/gotoitem.php?iid=44121d6bcb0763961fdb7e22d17ef34f淘宝钻级店铺&:广州立可达望远镜专卖/comm/gotoshop.php?nick=%E9%9B%AA%E5%9C%B0%E6%B7%B1%E8%93%9D
请登录后再发表评论!}

我要回帖

更多关于 哈勃太空望远镜官网 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信