已知数轴上有a和b两点抛物线y=mx²-(m+1)x-3m与x轴交于A、B两点(点A在点B的左侧),与y轴交于点c,且OA分之1-OB

知识点梳理
与一元二次的关系y=a{{x}^{2}}+bx+c在x轴上方的部分点的纵坐标为正,所对应的x的所有值就是不等式a{{x}^{2}}+bx+c>0的解集;在x轴下方的部分点的纵坐标都为负,所对应的x的所有值就是不等式a{{x}^{2}}+bx+c<0的解集,不等式中如果带有等号,其解集也相应带有等号。
设一般式&{{y=ax}^{2}}+bx+c(a≠0)若已知条件或根据已知可推出图象上三个点,可以设成一般式,将已知条件代入解析式,得出关于&a、b、c&&的组,解方程即可.设顶点式&{{y=a\(x-h\)}^{2}}+k(a≠0)若已知条件或根据已知可推出函数的顶点或与最值时,可以设成顶点式,将已知条件代入解析式,求出待定系数.设交点式&{{y=a\(x-x}_{1}}{{\)\(x-x}_{2}}\)+m(a≠0)若已知条件或根据已知可推出图象上纵坐标相同的两个为&{{\(x}_{1}},m\)和{{\(x}_{2}},m\)&时,可以设交点式,将已知条件代入解析式,求出待定系数.
的性质:1.&y=a{{x}^{2}}(a≠0)的图像是一条,它的对称轴是y轴,顶点是原点(0,0)。(1)&二次函数图像怎么画?作法:①列表:一般取5个或7个点,作为顶点的原点(0,0)是必取的,然后在y轴的两侧各取2个或3个点,注意对称取点;②描点:一般先描出对称轴一侧的几个点,再根据对称性找出另一侧的几个点;③连线:按照自变量由小到大的顺序,用平滑的曲线连接所描的点,两端无限延伸。(2)&二次函数y={{x}^{2}}与y=-{{x}^{2}}的图像和性质:2.&二次函数y=a{{x}^{2}}+k(a,k是常数,a≠0)的图像是一条抛物线,它的对称轴是y轴,顶点坐标是(0,k),它与y=a{{x}^{2}}的图像形状相同,只是位置不同。函数y=a{{x}^{2}}+k的图像是由抛物线y=a{{x}^{2}}向上(或下)平移|k|个单位得到的。当a>0时,抛物线y=a{{x}^{2}}+k的开口向上,在对称轴的左边(x<0时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>0时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=0时,y最小值=k。当a<0时,抛物线y=a{{x}^{2}}+k的开口向下,在对称轴的左边(x<0时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>0时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=0时,y最大值=k。3.&二次函数y=a{{\(x-h\)}^{2}}(a≠0)的图像是一条抛物线,它的对称轴是平行于y轴或与y轴重合的直线x=h,顶点坐标是(h,0),它与y=a{{x}^{2}}的图像形状相同,位置不同,函数y=a{{x}^{2}}+bx+c(a≠0)的图像是由抛物线y=a{{x}^{2}}向右(或左)平移|h|个单位得到的。画图时,x的取值一般为h和h左右两侧的值,然后利用对称性描点画图。当a>0时,抛物线y=a{{\(x-h\)}^{2}}的开口向上,在对称轴的左边(x<h时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>h时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=0。当a<0时,抛物线y=a{{\(x-h\)}^{2}}的开口向下,在对称轴的左边(x<h时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>h时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=h时,y最大值=0。4.&二次函数y=a{{\(x-h\)}^{2}}+k(a≠0)的图像是一条抛物线,它的对称轴是直线x=h,顶点坐标是(h,k),是由抛物线y=a{{x}^{2}}向右(或左)平移|k|个单位,再向上(下)平移|k|个单位得到的。当a>0时,抛物线y=a{{\(x-h\)}^{2}}+k的开口向上,在对称轴的左边(x<h时),曲线自左向右下降,函数y随x的增大而减小;在对称轴的右边(x>h时),曲线自左向右上升,函数y随x的增大而增大。顶点是抛物线的最低点,在顶点处函数y取得最小值,即当x=h时,y最小值=k。当a<0时,抛物线y=a{{\(x-h\)}^{2}}+k的开口向下,在对称轴的左边(x<h时),曲线自左向右上升,函数y随x的增大而增大;在对称轴的右边(x>h时),曲线自左向右下降,函数y随x的增大而减小。顶点是抛物线的最高点,在顶点处函数y取得最大值,即当x=h时,y最大值=k。5.&二次函数的图像的画法:(1)&描点法,步骤如下:a.&利用配方法把二次函数y=a{{x}^{2}}+bx+c化成y=a{{\(x-h\)}^{2}}+k的形式。b.&确定抛物线的开口方向、对称轴和顶点坐标。c.&在对称轴两侧,以顶点为中心,左右对称描点画图。(2)&平移法,步骤如下:a.&利用配方法把二次函数y=a{{x}^{2}}+bx+c化成y=a{{\(x-h\)}^{2}}+k的形式,确定其顶点(h,k)。b.&作出函数y=a{{x}^{2}}的图像。c.&将函数y=a{{x}^{2}}的图像平移,使其顶点平移到(h,k)。
1.求顶点坐标及的方法:将抛物线解析式写成y=a{{\(x-h\)}^{2}}+k的形式,则顶点坐标为(h,K),对称轴为直线x=h,也可应用对称轴公式x=-{\frac{b}{2a}},顶点坐标公式\(-{\frac{b}{2a}},{\frac{4ac-{{b}^{2}}}{4a}}\)来求对称轴及顶点坐标。2.如果抛物线上两点(x1,m),(x2,m)的纵坐标相等,那么这两点关于抛物线的对称轴x={\frac{{{x}_{1}}+{{x}_{2}}}{2}}对称,反过来,如果两点(x1,y1),(x2,y2)是抛物线上的对称点,那么这两点的纵坐标相等,即y1=y2。
整理教师:&&
举一反三(巩固练习,成绩显著提升,去)
根据问他()知识点分析,
试题“已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两...”,相似的试题还有:
已知抛物线y1=x2+2(m+2)x+m-2与x轴交于A,B(点A在点B左侧)两点,且对称轴为x=-1.(1)求m的值并画出这条抛物线;(2)根据图象回答当x取什么值时,函数值y1大于0?(3)若直线y2=kx+b过点B且与抛物线交于点P(-2,-3),根据图象回答当x取什么值时,y2≤y1.
已知抛物线y1=x2+2(m+2)x+m-2与x轴交于A,B(点A在点B左侧)两点,且对称轴为x=-1.(1)求m的值并画出这条抛物线;(2)根据图象回答当x取什么值时,函数值y1大于0?(3)若直线y2=kx+b过点B且与抛物线交于点P(-2,-3),根据图象回答当x取什么值时,y2≤y1.
如图,抛物线y=x2+bx+c过点A(-4,-3),与y轴交于点B,对称轴是x=-3,请解答下列问题:(1)求抛物线的解析式.(2)若和x轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD=8,求△BCD的面积.注:抛物线y=ax2+bx+c(a≠0)的对称轴是x=-.函数y=-x^2+2(m-1)x+m+1的图像与x轴交于A,B两点,点A在负半轴上,点B在正半轴上_百度知道
函数y=-x^2+2(m-1)x+m+1的图像与x轴交于A,B两点,点A在负半轴上,点B在正半轴上
3,线段OA与OB的比为1,B两点,点B在正半轴上,点A在负半轴上函数y=-x^2+2(m-1)x+m+1的图像与x轴交于A,求m的值
我有更好的答案
(x0&-4·(-1)·(m+1)&0整理;3m=1-x0=1- 2&#47,得m&#178;+x0-2=0(x0+1)(3x0-2)=0x0=-1(x0&-m+2&+2(m-1)x+m+1=0有两不等实根,0),x=-3x0由韦达定理得x0+(-3x0)=2(m-1)
x0·(-3x0)=-(m+1)解得m=1-x0
m=3x0&#178;3m的值为1&#47,m可取任意实数;-11-x0=3x0&#178,判别式△&+2(m-1)x+m+1=0两根分别为x=x0;-13x0&#178;0,点B坐标(-3x0;3=1/0[2(m-1)]&#178;0)方程-x&#178,不等式对于任意实数m恒成立,舍去)或x0=2/0。方程-x&#178由题意设点A坐标(x0
其他类似问题
为您推荐:
负半轴的相关知识
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁当前位置:
>>>如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点..
如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点在A点右侧),点H、B关于直线l:y=33x+3对称,过点B作直线BK∥AH交直线l于K点.(1)求A、B两点坐标,并证明点A在直线l上;(2)求此抛物线的解析式;(3)将此抛物线向上平移,当抛物线经过K点时,设顶点为N,直接写出NK的长.
题型:解答题难度:中档来源:不详
(1)令y=0,则mx2+2mx-3m=0(m≠0),解得x1=-3,x2=1,∵B点在A点右侧,∴A点坐标为(-3,0),B点坐标为(1,0),证明:∵直线l:y=33x+3,当x=-3时,y=33×(-3)+3=-3+3=0,∴点A在直线l上;(2)∵点H、B关于过A点的直线l:y=33x+3对称,∴AH=AB=4,设直线l与x轴的夹角为α,则tanα=33,所以,∠α=30°,∴∠HAB=60°,过顶点H作HC⊥AB交AB于C点,则AC=12AB=2,HC=42-22=23,∴顶点H(-1,23),代入抛物线解析式,得m×(-1)2+2m×(-1)-3m=23,解得m=-32,所以,抛物线解析式为y=-32x2-3x+332;(3)∵过点B作直线BK∥AH交直线l于K点,∴直线BK的k=tan60°=3,设直线BK的解析式为y=3x+b,∵B点坐标为(1,0),∴3+b=0,解得b=-3,∴直线BK的解析式为y=3x-3,联立y=3x-3y=33x+3,解得x=3y=23,∴点K的坐标为(3,23),当x=3时,y=-32×32-3×3+332=-63,∴平移后与点K重合的点的坐标为(3,-63),平移距离为23-(-63)=83,∵平移前顶点坐标为(-1,23),23+83=103,∴平移后顶点坐标N(-1,103),∴NK=(-1-3)2+(103-23)2=208=413,所以,NK的长是413.
马上分享给同学
据魔方格专家权威分析,试题“如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,抛物线y=mx2+2mx-3m(m≠0)的顶点为H,与x轴交于A、B两点(B点..”考查相似的试题有:
502567147522155452544389896838902223已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=-1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(-2m,-3m),根据图象回答_百度作业帮
已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=-1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(-2m,-3m),根据图象回答
已知抛物线y1=x2+(m+1)x+m-4与x轴交于A、B两点(点A在点B左侧),且对称轴为x=-1.(1)求m的值;(2)画出这条抛物线;(2)若直线y2=kx+b过点B且与抛物线交于点P(-2m,-3m),根据图象回答:当x取什么值时,y1≥y2.
(1)由题意,有,解得m=1.(2)∵m=1,∴y1=x2+2x-3,∴y1=(x+1)2-4,列表为:
…描点并连线为:(3)∵m=1∴P(-2,-3),∴可以画出直线的图象.∴由图象得x≤-2或x≥1时,y1≥y2.
本题考点:
待定系数法求二次函数解析式;二次函数的图象;二次函数图象上点的坐标特征;二次函数与不等式(组).
问题解析:
(1)对称轴为x=-1.可得出-=-1,从而可以求出m的值.(2)由m的值可以求出抛物线的解析式,再根据解析式确定对称轴,用描点法就可以画出抛物线的解析式.(3)由(2)的图象可以得出B(1,0),由(1)m的值可以求出P的坐标(-2,-3),再将B、P的坐标代入直线的解析式就可以求出直线的解析式,并画出直线的图象,由图象就可以求出满足条件的x的取值范围.这是个机器人猖狂的时代,请输一下验证码,证明咱是正常人~}

我要回帖

更多关于 已知两点求抛物线 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信