爱因斯坦提出的当速度达到光速侠时就会相当于停止是对的吗?

爱因斯坦提出了相对论,光速以及时间的具体关系是什么?为什么说当速度等于光速时时间就会停止?_百度作业帮
爱因斯坦提出了相对论,光速以及时间的具体关系是什么?为什么说当速度等于光速时时间就会停止?
  这个形式简洁优美的理论蕴藏了太多令人惊讶的内容,100年来,人们时时从中悟出宇宙层出不穷的奥秘,直到今天,这里还有很多内容没有被我们悟透.  文/甘信风  相对论的研究对象是超越我们日常经验的高速运动世界和广阔的宇宙,这是我们难以理解相对论的主要原因.  自相对论诞生之日起,它所带来的时空观革命就极大地拓展了人类对宇宙的理解.从相对论中,人们发现了时间旅行的奥秘、原子裂变的巨大能量、宇宙的起源和终结、黑洞和暗能量等奇妙现象.几乎宇宙所有的奥秘都隐藏在相对论那几行简单的公式中.  时间旅行  时间旅行也许意味着可以去修正或改变命运的发展,或是与历史上的风云人物们一起去见证伟大的历史事件;人们当然也有可能去未来旅行,比如去那里了解股市行情,探知科学上的新发现.时间旅行打开了一扇既可以回到过去又可以踏入未来的大门.  如果认为时间旅行仅仅只是一个科幻小说的题材,那就大错特错了,因为相对论的思想表明,时间旅行是可能的.  狭义相对论证明高速旅行会使时间变慢,假定将来的某个时候,人们已解决了所有的技术难题,能够制造一艘以亚光速飞行的宇宙飞船,一定意义上的时间旅行就变成可能了.如果飞船以亚光速从地球出发向遥远的星系飞去,来回的旅程仅仅几年(按飞船上的时间),但在此期间地球上却已过去了几千年,一切都发生了天翻地覆的变化.如果人类文明依然还存在的话,那又会是一个什么新的模样呢?  广义相对论表明,时空可以不是平坦的,而是弯曲的.我们可以在地球与宇宙遥远的地方这两点之间凿出一个虫洞,然后用某种“奇异物质”把洞口撑开,使之成为一个突然出现在宇宙中的超空间管道,让我们在瞬间到达遥远的彼岸.然后当我们返回时,虫洞的奇异性质让我们年轻了很多.  广义相对论判定足够的质量能改变和扭曲时空,数学家法兰克·提普勒据此设想了把时空卷起来的时间旅行方法.他认为,如果太空中的一个巨大物体以一半光速旋转,时空便会扭曲折回.因此,只要将来有人制造一个巨大的圆筒,它的长约为直径的10倍,然后使圆筒以15万公里/秒的速度旋转,便会使圆筒中央附近产生一个扭曲折回的时空.  要将这圆筒当时间机器使用,宇宙飞船一定要开到圆筒的中心沿圆筒内壁盘旋飞行:逆圆筒旋转的方向航行是驶入过去,顺圆筒旋转的方向航行是驶入未来,每盘旋一周都使宇宙飞船更深入过去或未来一些.时间旅行者到达了目的时间,便将飞船驶离圆筒.有一件必须明了的事是,正像所有理论上的时间机器一样,就是驶向过去无论怎样也不能到达比制成圆筒更早的时间.  时间旅行是一个极具幻想色彩、也极具魅力的话题,长期以来,科学家们提出的方案一个又一个,时间旅行可能遇到的问题也被热烈讨论着.总有一天,相对论迷人的光芒会照耀着我们开始真正的时间旅行.  原子裂变  1905年11月,爱因斯坦同样在德国《物理学纪事》杂志上发表了关于狭义相对论的第二篇文章:《物体的惯性同它所包含的能量有关吗?》,这是一篇短文,在这篇论文中,他提出一个物体的质量并不是恒定不变的,而是随着运动速度的增加而增加.这就是运动中物体的“质增效应”.  现在我们想象我们在推一辆小板车,板车很轻,上面什么东西也没有.假设这是一辆在真空中的“理想”板车,没有任何摩擦力、也没有任何阻力,因此,只要我们持续地推它,它的速度就越来越快,但随着时间的推移,它的质量也越来越大,起初像车上堆满了钢铁,然后好像是装着一座喜马拉雅山、再然后好像是装着一个地球、一个太阳系、一个银河系……当小板车接近光速时,好像整个宇宙都装在它上面——它的质量达到无穷大.这时,你无论施加多大力,无论推多长时间,它都不可能运动得再快一些.  由此可见,光子既然以光速传播,它的静止质量就必须等于零,否则它的运动质量就会无穷大.  当物体运动接近光速时,我们不断地对物体施加外力,供给能量,可物体速度的增加越来越困难,我们施加的能量去哪儿了呢?其实能量并没有消失,而是转化为了质量.这就是说,物体质量的增加与动能增加有着密切联系,或者说物体的质量与能量之间有着密切联系.爱因斯坦在说明这种联系的过程中,提出了著名的质能关系式:E=mc2.  能量等于质量乘以光速的平方,即使是在不甚关心其实用价值的纯理论型的物理学家看来也是惊心动魄的,而在绝大多数人眼里,能量等于质量乘以光速的平方,即能量是质量的900万倍,是多么诱人的前景呀!指甲盖般大小的物质的质量如果完全消失,其释放的能量是用以万吨煤炭来计算的.  遗憾的是,没人能随便减少质量,譬如一块石头,我们尽可以用锤子砸成小块,然后碾成碎末,可是当你仔细地收集这些碎末后就会发现它的质量并未变化.  但是,十几年后的1939年,约里奥·居里、费米、西拉德这三位科学家分别独立发现了链式反应,使人类找到了释放巨大原子能的方法.铀235的核收到中子轰击就会发生裂变,分裂成两个中等质量的新原子核,放出1~3个中子,并释放出巨大能量,这些中子又能引发其它铀核再分裂,如此反复,形成连锁反应,不断释放巨大能量.这就是链式反应.  链式反应使原子能成为杀伤力巨大的新武器.仅仅在几年后,人类第一颗原子弹在美国爆炸成功,紧接着日本人遭受了人类历史上最残酷的惩罚,几十万人死伤,其中一部分人瞬间还被原成基本粒子,真成了魂飞魄散.E=mc2在给人间带来希望之前,带来的先是致命的创伤,这一切对于深爱和平的爱因斯坦来说无疑是一记重拳,直至临死前他仍为此痛心不已.  宇宙大爆炸  令我们这些当代人感到惊诧的是,迟至1917年,那些人类最具智慧的大脑仍然以为我们的银河系就是整个宇宙,而这个银河系大小的宇宙永远都是稳定不变的,既不会变大也不会变小,这就是流传了千百年的稳恒态宇宙观.  1917年,爱因斯坦试图根据广义相对论方程推导出整个宇宙的模型,但他发现,在这样一个只有引力作用的模型中,宇宙不是膨胀就是收缩.为了使这个宇宙模型保持静止,爱因斯坦在他的方程里额外增加了一个新的概念——宇宙常数,它表示的是一种斥力,同引力相反,它随着天体之间距离的增大而增强.这是一个假想的、用以抵消引力作用的力.  然而,爱因斯坦很快发现自己错了.因为科学家们很快发现,宇宙实际上是膨胀的!  最早观察到这一点的是20世纪的天文学之父哈勃.哈勃1889年出生于美国的密苏里州,毕业于芝加哥大学天文系.1929年,哈勃发现所有星系都在远离我们而去,这表明宇宙正在不断膨胀.这种膨胀是一种全空间的均匀膨胀,因此,在任何一点的观测者都会看到完全一样的膨胀,从任何一个星系来看,一切星系都以它为中心向四面散开,越远的星系间彼此散开的速度越大.  宇宙的膨胀意味着,在早先,星体相互之间更加靠近,并且在更遥远过去的某一刻,它们似乎在同一个很小的范围内.  宇宙膨胀的消息传到著名物理学家伽莫夫那里去的时候,立即引起了这位学者的兴趣.乔治·伽莫夫出生于俄国,自小对诗歌、几何学和物理学都深感兴趣,在大学时期成为物理学家弗里德曼的得意门生.弗里德曼曾在爱因斯坦之后提出了重要的宇宙膨胀模型,伽莫夫也成为宇宙膨胀理论的热心支持人之一.1945年,人类史上第一颗原子弹爆炸成功,看着蘑菇云升起的照片,伽莫夫突发灵感:把原子弹规模“放大”到无穷大,不就成了宇宙爆炸吗?他把核物理知识和宇宙膨胀理论结合起来,逐渐形成了自己的一套大爆炸宇宙理论体系.  1948年,伽莫夫和他的学生阿尔法合写了一篇著名论文,系统地提出了宇宙起源和演化的理论.与我们惯常的想法不同,这个创生宇宙的大爆炸不是发生在一个确定的点,然后向四周的空气传播开去的那种爆炸,而是空间本身在扩展,星系物质随着空间的扩展而分开.  根据大爆炸宇宙论,极早期的宇宙是一大片由微观粒子构成的均匀气体,温度极高,密度极大,且以很大的速率膨胀着.伽莫夫还作出了一个非凡的预言:我们的宇宙仍沐浴在早期高温宇宙的残余辐射中,不过温度已降到6K左右.正如一个火炉虽然不再有火了,还可以冒一点热气.  1964年,美国贝尔电话公司年轻的工程师——彭齐亚斯和威尔逊,因一次偶然的机会发现了伽莫夫所预言的早期宇宙的残余辐射,经过测量和计算,得出这个残余辐射的温度是2.7K(比伽莫夫预言的温度要低),一般称为3K宇宙微波背景辐射.这一发现有力的佐证了宇宙大爆炸理论.  广义相对论的智慧之处就在于,它从诞生起就能描述整个完整的宇宙,即使那些未知的领域也被全部囊括进去.让它对付像太阳系这样小小的、很普通的时空领域可真是大材小用了.  宇宙常数死而复生——暗能量  在发现了宇宙膨胀这个事实后,爱因斯坦就急忙忙把他方程中的宇宙常数项去掉了,并认为宇宙常数是他“一生中最大的错误”.随后,宇宙常数被抛进历史的垃圾堆.  然而造化弄人,几十年后,宇宙常数又像鬼魂般的复活了.这次宇宙常数的复活要归因于暗能量的发现.  1998年,天文学家们发现,宇宙不只是在膨胀,而且在以前所未有的加速度向外扩张,所有遥远的星系远离我们的速度越来越快.那么一定有某种隐藏的力量在暗中把星系相互以加速膨胀的方式撕扯开来,这是一种具有排斥力的能量,科学家们把它称为“暗能量”.近年来,科学家们通过各种的观测和计算证实,暗能量不仅存在,而且在宇宙中占主导地位,它的总量约达到宇宙总量的73%,而宇宙中的暗物质约占23%、普通物质仅约占4%.我们一直以为满天繁星就已经够多了,宇宙中还有什么能比得上它们呢?而现在,我们才发现这满天繁星却是“弱势群体”,剩下的绝大部分都是我们知之甚少或干脆一无所知的,这怎么不让人感到惊心动魄呢!  事实上,早在1930年,就有天体物理学家指出,爱因斯坦那加入了宇宙常数的宇宙学方程并不能导出完全静态的宇宙:因为引力和宇宙常数是不稳定的平衡,一个小小的扰动就能导致宇宙失控的膨胀和收缩.而暗能量的发现告诉我们,爱因斯坦那作为与引力相抗衡的宇宙常数不仅确确实实存在,而且大大扰动了我们的宇宙,使宇宙的膨胀速率严重失控.在经历了一系列曲折后,宇宙常数正在时间中复活.  宇宙常数今日以暗能量的面目出现在世人面前,它所产生的汹涌澎湃的排斥力已令整个宇宙为之变色!暗能量和引力之间的角力战自宇宙诞生起就没有停止过,在这场漫长的战斗中,最举足轻重的就是彼此的密度.物质的密度随着宇宙膨胀导致的空间增大而递减;但暗能量的密度在宇宙膨胀时,变化得非常缓慢,或者根本保持不变.在很久以前,物质的密度是较大的,因此那时的宇宙是处于减速膨胀的阶段;现今的暗能量密度已经大于物质的密度,排斥力已经从引力手中彻底夺得了控制权,以前所未有的速度推动宇宙膨胀.根据一些科学家的预测,再过200多亿年,宇宙将迎来动荡的末日,恐怖的暗能量终将把所有的星系、恒星、行星一一撕裂,宇宙将只剩下没有尽头的寒冷、黑暗.  暗能量的发现,也充分地体现了人类认知过程又走进了一个“悖论怪圈”:即宇宙中所占比例最多的,反而是最迟也是最难为我们所知晓的.一方面人类现在对宇宙奥秘的了解越来越多,另一方面我们所要面对的未知也越来越多.而这日益深远的未知又反过来不断刺激着人类去探索宇宙背后的真相.  暗能量是怎么来的?它将如何发展?这已经是21世纪宇宙学所面临的最重大问题之一.  黑洞大发现  广义相对论表明,引力场可以造成空间弯曲,强大的引力场可以造成强烈的空间弯曲,那么无限强大的引力场会产生什么情况呢?  1916年爱因斯坦发表广义相对论后不久,德国物理学家卡尔·史瓦西就用这个理论描绘了一个假设的完全球状星体附近的空间和时间是如何弯曲的.他证明,假如星体质量聚集到一个足够小的球状区域里,比如一个天体的质量与太阳相同,而半径只有3公里时,引力的强烈挤压会使那个天体的密度无限增大,然后产生灾难性的坍塌,使那里的时空变得无限弯曲,在这样的时空中,连光都不能逃逸!由于没有了光信号的联系,这个时空就与外面的时空分割成两个性质不同的区域,那个分割球面就是视界.  这就是我们今天耳熟能详的黑洞,但在那个年代,几乎没有人相信有这么奇怪的天体存在,甚至包括爱因斯坦本人和爱丁顿这样的相对论大师也明确表示反对这种怪物,爱因斯坦还说他可以证明没有任何星体可以达到密度无限大.就连黑洞这个名称也是一直到1967年才由美国物理学家惠勒命名.  历史当然不会因此而停止前进,时间进入20世纪30年代,美国天文学家钱德拉塞卡提出了著名的“钱德拉塞卡极限”,即:一颗恒星当其氢核燃尽后的质量是太阳质量的 1.44倍以上时,将不可能变成白矮星,而会继续坍塌收缩,变成体积比白矮星更小、密度比白矮星更大的星体,即中子星.1939年,美国物理学家奥本海默进一步证明,一颗恒星当其氢核燃尽后的质量是太阳质量的3倍以上时,其自身引力的作用将能使光线都不能逃出这个星体的范围.  随着经验的积累,关于黑洞的理论变得成熟起来,人们从彻底拒绝这个怪物到渐渐相信它,到20世纪60年代,人们已普遍接受黑洞的概念,黑洞的奥秘被逐渐研究出来.  严格而言,黑洞并不是通常意义下的“星”, 而只是空间的一个区域.这是与我们日常宇宙空间互不连通的区域,黑洞视界将这两个区域隔绝开,在视界以外,可以由光信号在任意距离上相互联系,这就是我们所居住的正常宇宙;而在视界以内,光线并不能自由地从一个地方传播到另一个地方,而是都朝向中心集聚,事件之间的联系受到严格限制,这就是黑洞.  在黑洞的内部,物体向黑洞坠落的过程中,潮汐力越来越大,在中心区域,引力和起潮力都是无限大.因此,在黑洞中心,除了质量、电荷和角动量以外,物质其他特性全部丧失,原子、分子等等都将不复存在!在这种情形下,无法谈论黑洞的哪一部分物质,黑洞是一个统一体!  在黑洞中心,全部物质被极为紧密地挤压成为一个体积无限趋近于零的几何点,任何强大的力量都不可能把它们分开,这就是所谓的“奇点”状态.广义相对论无法对此进行考察,而必须代之以新的正确理论——量子理论.讽刺的是,广义相对论给我们导出了一个黑洞,却在黑洞的奇点之处失效,量子理论取而代之,而量子理论和相对论却根本互不相容!已有天涯账号?
这里是所提的问题,您需要登录才能参与回答。
"天涯问答"是天涯社区旗下的问题分享平台。在这里您可以提问,回答感兴趣的问题,分享知识和经历,无论您在何时何地上线都可以访问,此平台完全免费,而且注册非常简单。
为什么速度达到光速就能回到过去?是真的吗?
为什么速度达到光速就能回到过去?是真的吗?
08-12-06 & 发布
在物理学的研究中,人们提出过很多佯谬。提出佯谬的目的,是使所研究的问题尖锐化,以便于进一步把理论的基本概念搞清,或弄清逻辑论证中有什么错误,或隐含着什么样的假定,或者忽略了其它什么重要因素,等等。关于狭义相对论就曾提出过两个佯谬,即“双生子佯谬”和“爷孙佯谬”(即超光速运动所导致的时间倒流或因果颠倒问题)。“双生子佯谬”在狭义相对论推广到广义相对论后得到解决,“爷孙佯谬”将在本文所讨论的狭义相对论的进一步推广中得到解决。 一、双生子佯谬 设想有两个孪生兄弟甲和乙,甲乘飞船作太空旅行,乙留在地面等待甲。甲所乘坐的飞船在极短的时间内加速到速度v(速度v接近光速c)。然后飞船以速度v作匀速直线飞行,飞船飞行很长一段时间后,迅速调头并继续以速度v作匀速直线飞行。回到地面时紧急减速、降落,并与一直在地面上的乙会合。甲只在启动、调头、减速降落的三段时间内有加速度,其余的绝大部分时间都在作匀速直线飞行,处于狭义相对论适用的惯性系。 按照第一章由洛仑兹变换导出的运动的时钟变慢的关系式 其中,△t为惯性系S的一静止的时钟所走过的时间,△t/为相对于S系以速度v运动的惯性系S/的一静止的时钟走过的时间。 因甲启动、调头、减速降落的时间很短,如果略去这三段时间,则有 τ为甲乘飞船作太空飞行所度过的时间,T为乙在地球上在甲乘飞船作太空飞行期间所度过的时间。即甲作高速太空旅行,返回时发现乙比甲变老了。 如果飞船速度非常接近光速c,相对论效应就会非常明显,如若v = 0.9999c ,则T=70.71τ。即如在这一对孪生兄弟20岁时,甲乘飞船作太空飞行,甲认为飞行时间只有一年,在其返回地面时,甲只有21岁,但他却发现乙却成了90多岁的老人了,亦即乙比甲年老了许多。 但是,以上情形还可以换另一个角度来考察。即对于乘坐太空飞船的甲来说,甲在飞船上静止不动,甲看到乙在极短的时间内朝相反的方向加速到速度v,然后乙以速度v作匀速直线飞行,乙飞行很长一段时间后,迅速调头并继续以速度v作匀速直线飞行,在与甲会合时紧急减速。在甲看来,乙只在启动、调头、减速的三段时间内有加速度,其余的绝大部分时间都在作匀速直线飞行、亦处于狭义相对论适用的惯性系。因此,在甲看来,如果略去乙启动、调头、减速这三段时间(因这三段时间相对很短),在乙离开飞船期间,乙所度过的时间τ/与甲所度过的时间T/也应存在以下关系(狭义相对论一般将相对于静止系统作匀速直线运动的系统内静止的钟所走过的时间记为τ,称为该系统的原时) 这样,在甲乙会面时,甲比乙变老了。即如乙作匀速直线飞行的速度为v = 0.9999c ,在乙飞离甲一年后与甲会面时,乙只有21岁,但他却发现甲却成了90多岁的老人了,亦即甲比乙年老了许多。 可见,从不同的角度分析其结论是不同的,而且是相互矛盾的。究竟是乙比甲年老了许多还是甲比乙年老了许多?还是两者都错了,二人应该一样年轻?这个命题就叫做“双生子佯谬”。 “双生子佯谬”使人们争论了很长时间,爱因斯坦在1918年专门写了一篇文章,以一个访问者和他本人问答的方式,说明了“双生子佯谬”的问题所在,“双生子佯谬”问题才告解决。 人们在讨论“双生子佯谬”问题时,无论从哪个角度考虑,总是为了应用狭义相对论,并认为启动、调头、减速这些过程的时间很短,所以将启动、调头、减速这些过程的时间给忽略了。但“双生子佯谬”问题的关键,恰恰是被忽略了的这些过程所引起的。 在按第一种观点考虑“双生子佯谬”问题时,乙留在地面等待甲,甲乘飞船作太空旅行,甲所乘坐的飞船在启动、调头、减速降落这些过程的加速、减速,都是相对于乙所在的惯性系而言的,所以这些过程没有什么附加的特殊效应,又因这些过程的时间都很短,所以可以将其忽略;而按第二种观点考虑“双生子佯谬”问题时,既认为甲及其所乘坐的飞船静止不动,乙在飞离甲及甲所乘坐的飞船时,乙在启动、调头、减速这些过程的加速、减速,是相对于甲所处的非惯性系而言的。按照广义相对论的等效原理,相当于考察乙的运动的参考系中有一个引力场,虽然甲和乙都处在这一引力场中,但因他们在引力场中所处的位置不同,因而引力场对他们的影响也就不同。在乙启动及减速降落时,甲和乙距离较近,他们的引力场势相差不大,引力场对他们时间的流逝的影响也相差不大,所以仍可将这部分较短的时间忽略。而在乙调头时,由于甲和乙的距离非常遥远,这时乙的引力场势远高于甲,它使乙的时间比甲流逝得要快的多,或者反过来说,它使甲的时间比乙流逝得要慢的多。这一影响超过了乙相对于甲匀速运动期间速度v对时间的影响,使乙飞行归来与甲会合时,乙仍然要比甲变老了。所以乙调头这一过程在考虑“双生子佯谬”问题时是不能忽略的。运用广义相对论进行计算的结果,是乙的时间τ/与甲所度过的时间T/也存在以下关系 或 即乙飞行归来与甲会合时,甲仍然是21岁,而乙是90多岁。 1966年,人们在实验中测得μ子绕圆形轨道高速运动时,其平均寿命比在地面上静止的μ子的平均寿命长。1971年,人们又观察到了放在卫星上绕地球旋转的原子钟比地面上的原子钟走的慢的现象。这些实验证明了广义相对论的正确性,同时也证明了爱因斯坦关于“双生子佯谬”问题论证的正确性。 二、爷孙佯谬 人们在研究狭义相对论的坐标变换,并考虑运动速度v超过光速c的情形时,又提出了“爷孙佯谬”。 由上一节我们知道,两事件的时间间隔与它们的空间位置和考察这两事件的惯性系间的运动状态有关。虽然如此,两事件的先后次序仍应是绝对的,不能因为它们的空间位置和考察这两事件的惯性系间的运动状态不同而改变,即相对论仍然遵循逻辑关系的因果律,亦即要先有因再有果,如去太空旅行须先启程,然后再返回;种田须先播种再收获,人是先出生后死亡。基于这种考虑,人们对相对论进行了如下探讨。 假设惯性系s/相对于惯性系S以速度v作匀速直线运动,S中有两事项P1(x1,t1)和P2(x2,t2),这两事项在s/系的坐标为(x1/,t1/)和(x2/,t2/),例如这两事项是信号由P1传递至P2 ,则信号的传递速度为 根据洛仑兹变换的时间变换关系 得 考虑这两事件的因果关系在两惯性系不变,即它们的先后次序不变,因而有 t2-t1&0 ; t2/-t1/&0 故有 即: 因为v & c ,所以满足上式的充分条件是: 即不破坏因果关系的要求是u≤c,亦即所有信号的传播速度,包括相互作用的传递速度、物体的运动速度都不能超过光速c。否则,如果u&c,则总存在这样的一些惯性系,使t2-t1和t2/-t1/的符号相反,这就意味着将出现时间倒流、因果颠倒的情形。有人据此提出如下命题:如果u&c,即存在超光速而出现时间倒流,那么设想某人进入超光速世界的时间足够长,他的时间不仅倒流到他出生以前,而且倒流到了他父亲出生以前,这时他将他的爷爷杀掉,然后又回到我们的低光速世界,这时他和他父亲是否存在,如果存在,他父亲又怎么出生。人们将这一命题称为“爷孙佯谬”,又称为“祖父悖论”。 有人并不管“爷孙佯谬”或“祖父悖论”的逻辑困难,尽情地在科幻小说、科幻电影、儿童片中发挥着超光速飞行和时间倒流。 三、超光速运动(快子)研究现状 也有一些人凭着直觉、猜想或哲学的思辩对超光速粒子(即快子)作出了种种推测。尤其现在出现了UFO(飞碟)研究热,人们依据有关飞碟的目击报告和其它有关报道、报告,断定存在超光速飞行,并且也对超光速粒子作出了种种推测。所有这些推测都缺乏理论依据,没有经过严格的理论推导。因而这些推测、猜想所作出的结论是杂乱的,无法作一概括性的介绍。现仅对其中的一些罗列如下,本文只在所引原文后附一个评注,权作是与原文作者及读者的一个讨论: 1、阿西莫夫在《你知道么?—现代科学中的一百个问题》(科学普及出版社 1984年)中写到的第51个问题: 既然没有任何东西能超过光速,人们所假定的那种运动得比光快的快子又是什么玩艺儿呢? 爱因斯坦的狭义相对论有一个要求:我们宇宙中所存在的一切物体,都无法以超过真空中的光速的相对速度运动。单是为了迫使物体达到光速,就得花费无限多的能量,而把它推动到超过光速,就需要花费比无限多还要多的能量,这简直是无法思议的了。 不过,让我们暂时假定有一个物体正在以超过光速的速度运动。 光的速度是每秒约300,000公里,那么,要是有某个质量为1公斤、长度为1厘米的物体以每秒约424,000公里的速度运动,会发生什么情况呢?如果我们应用爱因斯坦的方程,它就会告诉我们说,这时物体质量将等于(负的负1的平方根)公斤,它的长度将变成(负1的平方根)厘米。 换句话说,任何一个运动得比光还快的物体,都会具有必须用数学上所谓“虚数”来表示的质量和长度。我们没有任何办法把用虚数表示的质量和长度具体化,所以,大家就很容易认为,这样的东西既然是无法想象的,它们就不会存在了。 但是,1967年,美国哥伦比亚大学的杰拉尔德·范伯格却认为很有希望把那样的质量和长度具体化(范伯格并不是最先提出快子的人,这种粒子是比拉纽克和苏达珊最先假定的,但是,范伯格推广了这种概念)。也许,由“虚数”表示的质量和长度只不过是一种描述具有(让我们说是)负重力的物体的办法—这种物体同我们这个宇宙中的物质并不是靠万有引力互相吸引,而是互相排斥。 范伯格把这种比光还要快的、具有虚质量和虚长度的粒子称为“快子”。要是我们假定这种快子能够存在,那么,它是不是能够按另一种方式来遵循爱因斯坦方程的要求呢? 显然,快子是会这样的。我们可以描绘出比光跑得还要快,但却遵循相对论要求的快子所构成的整个宇宙。不过,为了使快子能够做到这一点,在涉及能量和速度的时候,情况就会同我们通常所习惯的情况相反。 在我们这个“慢宇宙”中,不运动的物体的能量等于零,但是,当它获得能量时,它就运动得越来越快,如果它得到的能量无限大,它就会被加速而达到光的速度。在“快宇宙”中,能量等于零的快子以无限大的速度进行运动,它所得到的能量越大,它的运动就越慢,到能量为无限大时,它的速度就降低到光速。 在我们这个慢宇宙中,一个物体在任何条件下都不能运动得比光快。而在快宇宙中,一个快子在任何条件下都不能运动得比光慢。光速是这两个宇宙之间的界线,它是不能超越的。 但是,快子是不是真的存在呢?我们可以断言说,有可能存在着一个并不违反爱因斯坦理论的快宇宙,不过,有可能存在并不一定就等于存在。 探测快宇宙的一种可能的途径,就是要考虑到如果有一个快子超光速通过真空而运动,那么,在它飞过时就必定会留下一道有可能探测到的光尾迹。当然,大多数快子都飞得非常快—比光还要快几百万倍(正像大多数普通物体都运动得非常慢,只达到光速的几百万分之一那样)。 一般的快子和它们的闪光在我们能够发现它们之前,早就一瞬即逝了。只有那种非常罕有的高能快子,才会以慢到接近光速的速度从我们眼前飞过。既使在这种场合下,它们飞过一公里也只需要三十万分之一秒左右的时间,所以,要发现它们也是一桩极伤脑筋的任务! 评注:从虚数的长度和质量出发,认识到快子的相互排斥!但他们认为在快子飞过时会留下一道有可能探测到的光尾迹,不会吧?如果是这样,快子岂不早被探测到了?他们还认为快子的速度为无穷大时质量为零? 2、美国的马丁·哈威特在《天体物理学概念》(科学出版社 1981年第1版 第213、214页)一书中这样写到: 当爱因斯坦首次发现狭义相对论概念时,他明确指出物体运动速度不可能大于光速,他认为静质量和能量的关系式 已经说明,为了把物体加速到光速就需要无穷大的能量。因此如果粒子静质量不是零,粒子就不可能达到光速,当然更谈不上超过光速。 近年来,许多研究工作者却又提出了这个问题,他们认为连续的加速确实是无法达到光速的,但单凭这一点还不能排除超光速物质的存在,这是通过其它手段产生出来的,他们把以大于光速c的速度运动的粒子称为快子,并研究了这类实体可能具有的性质。 主张应该对超光速粒子存在的可能性进行研究的基本论点是:对于速度大于光速和小于光速的两种情况,洛仑兹变换在形式上是相似的,此外变换本身并未排除快子存在的可能性。 当然变换的相似性并不意味着粒子和超光速粒子的表现性质完全一样。如果我们看一下静质量和能量的关系式,我们就发现当粒子运动速度v & c 时分母中的量就是虚数。因此如果超光速粒子的质量(此处指静止质量m0)是实数,那么其能量就应当是虚数。实际上,人们把超光速粒子的(静止)质量取为虚数,其主要的依据就是观测上不能排除这样的选择。也许这是一种消极的途径,但如果我们不作这种假设,我们就更难取得进展,即更没有办法对实验可能取得的结果作出某些预言。 把质量选为虚数后就能使能量E变为实数,同时如式 所示,动量也是实数。 现在把动量—能量关系式 和质量—能量关系式结合起来,我们得到 当v变大时,看来E就会变小,在速度趋于无穷大的极限情况下能量变为零。但此时动量仍为有限值,并不断地朝| m0c|这个值逼近。 至此,我们不过是在把质量取为虚数这一点上脱离了正统观念。 人们已经为探索快子进行了初步的实验,但是至今还没有探测到,不过,或许将来有一天会发现它们。 看来,超光速粒子不容易与通常的物质发生相互作用,这是它的一个缺点。如果不是这样,我们现在就可能已经发现它们了。 评注:本文作者认为人们把快子的静止质量m0取为虚数是消极的,看来是出于无奈!不过把快子的静止质量取为虚数后,快子的动质量 m 和能量、动量便都为实数了,因而快子便和通常的物质具有相同的行为,所以便可以得出快子是可以探测到的结论。据此理论无法理解为什么探测不到快子,只能空叹息“超光速粒子不容易与通常的物质发生相互作用—这是它的一个缺点。”实际上这正是快子的一个优点,当人们真正了解到快子以后就会发现,它为我们提供了一个更丰富、更生动的世界,并让我们理解我们原来所不能理解的神秘现象,使人能够更好地发挥自身所具有的潜能。 3、徐克明 甄长荫主编的《一万个世界之谜·物理分册》把“光速是物质运动速度的极限吗?”作为一个谜: 相对论明确指出,任何物体(粒子)的速度总是小于c,最多等于c 。这个理论上的结果已被大量实验所证实。然而,在某些问题中,也会出现超光速的情况。这一看来矛盾的情况,只要我们将速度概念再进一步分析一下,就可以将它们统一起来。 这是因为,狭义相对论只对物质运动速度,或者说信号传播速度和作用传递的速度给出了极限,它并没有限制任何速度都不能超光速,因此,并不能排除自然界本来就存在超光速粒子的可能性。我们把小于光速的粒子叫做“慢子”,超光速的粒子叫做“快子”。自然界的粒子分成慢子、光子和快子三类。近年来,有人按静止质量的大小把它们分成三个类别:慢子m02 &0 , 光子m02 =0 ,而快子m02 &0 。目前关于超光速的实验观测是非常令人关注的,其主要领域多集中在天文现象方面,但目前尚无具体结果。那么,自然界究竟是否存在超光速粒子呢?这还是个谜。 评注:同上文观点相似,是一种颇具代表性的的观点。 4、南京航空航天大学的田道钧在《飞碟动力系统的研究概况与展望》中,对飞碟可能的动力原理进行了列举,其中的一个为: 虚质量原理 根据爱因斯坦的狭义相对论知,设物体的静止质量为m0 ,则其运动质量m与速度ν的关系为 当在亚光速0<v<c时,有m0&m&+∞,即运动质量m总是大于静止质量m0,并随着v的增大而接近于光速c时,引起质量m的无限增大,这表明任何有质量的物体其运动速度v以光速为上限,永远不可能达到光速,更不可能超过光速!现在要想实现星际飞行试问:宇宙间有没有超光速运动的物体?其次,怎样使飞碟实现超光速运动?为此先看,在实际观察中,1973年澳洲科学家通过连续观测和研究,发现的确有超光速运动的粒子存在,叫做“快子”,其速度以光速c为下限(这岂不与上述结论矛盾?不!因为上述结论是指“有质量”的物体,而在宇宙中确实有些物体在静止状态时没有质量,比如构成所有电磁辐射的基本单位的光子,引力的基本单位引力子等),其次,从理论上为了把上述公式推广到超光速v &c的范围(但又不与亚光速v &c时的情况相矛盾),当取v &c时,m为虚数(即把物体的质量由原来的实数范围相应地推广到了复数范围),叫做虚质量,这就是快子。快子的特性为,当其速度越慢,则其能量越大,如给快子一个推力使其能量加大,其速度反而会减小,如所给推力无限增大,其速度将趋近于光速而以光速为下限,反之当其能量越小,其速度反而越快,即在快子的运动方向给一个阻力,如通过阻滞介质以削弱其能量,其速度反而会增大,直到其能量完全消失,其速度将接近于无穷大!据此可见,如能设计出一种转换装置,把飞碟及其负载的每一个亚原子粒子全都转变成快子,即可在一瞬间飞出去而不需任何加速,其速度比光速快很多倍,并可通过调节其能量来控制速度大小,用不了几天就可飞到另一个遥远的星系,在那里不需任何减速,再通过转换装置把快子转换成亚原子粒子,最后再还原成原来的飞碟及其负载,上述情况听起来简直是不可思议!但据《新民晚报》日报导,奥地利因斯布鲁克实验物理学院的科技人员,通过一个光学仪器控制盘把处于量子状态的光子不借助于任何媒体传输到另一个光子,初步完成了“远距离传物”(即把物质转变成光子迅速传送到遥远的目的地,然后再重新转变成原来的物质)的实验,值得重视。 评注:将v&c直接应用于爱因斯坦的质量速度关系式,得到的质量不仅是虚数,而且还是负数,田先生对此未作任何解释,不可取。至于1973年澳洲科学家通过连续观测和研究,发现的确有超光速运动的粒子存在,并未得到人们的承认,估计是下文所介绍的假超光速现象的一种。 5、一篇较全面介绍有关超光速问题的文章: 相对论与超光速 本文编译自(Relativity FAQ .Philip Gibbsneo6编译) 人们所感兴趣的超光速,一般是指超光速传递能量或者信息。根据狭义相对论,这种意义下的超光速旅行和超光速通讯一般是不可能的。目前关于超光速的争论,大多数情况是某些东西的速度的确可以超过光速,但是不能用它们传递能量或者信息。但现有的理论并未完全排除真正意义上的超光速的可能性。 首先讨论第一种情况:并非真正意义上的超光速。 (1) 切伦科夫效应 媒质中的光速比真空中的光速小。粒子在媒质中的传播速度可能超过媒质中的光速。在这种情况下会发生辐射,称为切仑科夫效应。这不是真正意义上的 超光速,真正意义上的超光速是指超过真空中的光速。 (2) 第三观察者 如果A相对于C以0.6c的速度向东运动,B相对于C以0.6c的速度向西运动。对于C来说,A和B之间的距离以1.2c的速度增大。这种“速度”—两个运动物体之间相对于第三观察者的速度—可以超过光速。但是两个物体相对于彼此的运动速度并没有超过光速。在这个例子中,在A的坐标系中B的速度是0.88c。在B的坐标系中A的速度也是0.88c。 (3) 影子和光斑 在灯下晃动你的手,你会发现影子的速度比手的速度要快。影子与手晃动的速度之比等于它们到灯的距离之比。如果你朝月球晃动手电筒,你很容易就能让 落在月球上的光斑的移动速度超过光速。遗憾的是,不能以这种方式超光速地传递信息。 (4) 刚体 敲一根棍子的一头,振动会不会立刻传到另一头?这岂不是提供了一种超光速通讯方式?很遗憾,理想的刚体是不存在的,振动在棍子中的传播是以声速进行的,而声速归根结底是电磁作用的结果,因此不可能超过光速。(一个有趣的问题是,竖直地拎着一根棍子的上端,突然松手,是棍子的上端先开始下落还是棍子的下端先开始下落?答案是上端。) (5) 相速度 光在媒质中的相速度在某些频段可以超过真空中的光速。相速度是指连续的 (假定信号已传播了足够长的时间,达到了稳定状态)的正弦波在媒质中传播一段距离后的相位滞后所对应的“传播速度”。很显然,单纯的正弦波是无法传递信息的。要传递信息,需要把变化较慢的波包调制在正弦波上,这种波包的传播速度叫做群速度,群速度是小于光速的。(译者注:索末菲和布里渊关于脉冲在媒 质中的传播的研究证明了有起始时间的信号[在某时刻之前为零的信号]在媒质中的传播速度不可能超过光速。) (6) 超光速星系 朝我们运动的星系的视速度有可能超过光速。这是一种假象,因为没有修正从星系到我们的时间的减少(?)。 (7) 相对论火箭 地球上的人看到火箭以0.8c的速度远离,火箭上的时钟相对于地球上的人变慢,是地球时钟的0.6倍。如果用火箭移动的距离除以火箭上的时间,将得到一 个“速度”是4/3 c。因此,火箭上的人是以“相当于”超光速的速度运动。对于火箭上的人来说,时间没有变慢,但是星系之间的距离缩小到原来的0.6倍,因此他们也感到是以相当于4/3 c的速度运动。这里问题在于这种用一个坐标系的距离除以另一个坐标系中的时间所得到的数不是真正的速度。 (8) 万有引力传播的速度 有人认为万有引力的传播速度超过光速。实际上万有引力以光速传播。 (9) EPR悖论 1935年Einstein,Podolski和Rosen发表了一个理想实验试图表明量子力学的不完全性。他们认为在测量两个分离的处于entangled state的粒子时有明显的超距作用。Ebhard证明了不可能利用这种效应传递任何信息,因此超光速通信不存在。但是关于EPR悖论仍有争议。 (10) 虚粒子 在量子场论中力是通过虚粒子来传递的。由于海森伯不确定性这些虚粒子可以以超光速传播,但是虚粒子只是数学符号,超光速旅行或通信仍不存在。 (11) 量子隧道 量子隧道是粒子逃出高于其自身能量的势垒的效应,在经典物理中这种情况不可能发生。计算一下粒子穿过隧道的时间,会发现粒子的速度超过光速。一群物理学家做了利用量子隧道效应进行超光速通信的实验:他们声称以4.7c的速度穿过11.4 cm 宽的势垒传输了莫扎特的第40交响曲。当然,这引起了很大的争议。大多数物理学家认为,由于海森伯不确定性,不可能利用这种量子效应超光速地传递信息。如果这种效应是真的,就有可能在一个高速运动的坐标系中利用类似装置把信息传递到过去。 Terence Tao认为上述实验不具备说服力。信号以光速通过11.4cm的距离用不了0.4纳秒,但是通过简单的外插就可以预测长达1000纳秒的声信号。因此需要在更远距离上或者对高频随机信号作超光速通信的实验。 (12) 卡西米(Casimir)效应 当两块不带电荷的导体板距离非常接近时,它们之间会有非常微弱但仍可测量的力,这就是卡西米效应。卡西米效应是由真空能(vacuum energy)引起的。 Scharnhorst的计算表明,在两块金属板之间横向运动的光子的速度必须略大于光速。但进一步的理论研究表明不可能利用这种效应进行超光速通信。 (13) 宇宙膨胀 哈勃定理说:距离为D的星系以HD的速度分离。H是与星系无关的常数,称为哈勃常数。距离足够远的星系可能以超过光速的速度彼此分离,但这是相对于第三观察者的分离速度。 (14) 月亮以超光速的速度绕着我旋转! 当月亮在地平线上的时候,假定我们以每秒半周的速度转圈儿,因为月亮离 我们385,000公里,月亮相对于我们的旋转速度是每秒121万公里,大约是光速的四倍多!这听起来相当荒谬,因为实际上是我们自己在旋转,却说是月亮绕着我们转。但是根据广义相对论,包括旋转坐标系在内的任何坐标系都是可用的,这难道不是月亮以超光速在运动吗? 问题在于,在广义相对论中,不同地点的速度是不可以直接比较的。月亮的速度只能与其局部惯性系中的其它物体相比较。实际上,速度的概念在广义相对论中没多大用处,定义什么是“超光速”在广义相对论中很困难。在广义相对论中,甚至“光速不变”都需要解释。爱因斯坦自己在《相对论:狭义与广义理论》 第76页说“光速不变”并不是始终正确的。当时间和距离没有绝对的定义的时候, 如何确定速度并不是那么清楚的。 尽管如此,现代物理学认为广义相对论中光速仍然是不变的。当距离和时间单位通过光速联系起来的时候,光速不变作为一条不言自明的公理而得到定义。 在前面所说的例子中,月亮的速度仍然小于光速,因为在任何时刻,它都位于从它当前位置发出的未来光锥之内。 (15) 明确超光速的定义 四维时空中的一个点表示的是一个“事件”,即三个空间坐标加上一个时间坐标。任何两个“事件”之间可以定义时空距离,它是两个事件之间的空间距离的平方减去其时间间隔与光速的乘积的平方再开根号。狭义相对论证明了这种时空距离与坐标系无关,因此是有物理意义的。 时空距离可分三类:类时距离:空间间隔小于时间间隔与光速的乘积;类光距离:空间间隔等于时间间隔与光速的乘积;?/ca&
请登录后再发表评论!}

我要回帖

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信