照片中了暗星不是暗物质卫星 一年组成的暗星

拒绝访问 | www.ggdoc.com | 百度云加速
请打开cookies.
此网站 (www.ggdoc.com) 的管理员禁止了您的访问。原因是您的访问包含了非浏览器特征(4381f3cad6b543d1-ua98).
重新安装浏览器,或使用别的浏览器科学家称:宇宙首批恒星或为暗星 由暗物质组成
一项最新研究显示,如果推测属实,在暗物质的推动下,宇宙中的第一批恒星可能一直是膨胀而成的庞然大物。
&&& 【讯】2月1日消息,据英国《新家》杂志报道,一项最新研究显示,如果推测属实,在暗物质的推动下,中的第一批恒星可能一直是膨胀而成的庞然大物。这些&暗星&可能推迟了重元素的形成,重元素组成了从行星到人类的万事万物,其中包括宇宙的电离过程,该过程让几十亿年前的光线穿越宇宙空间。
  理论家认为,第一批恒星在的发源地形成,大量气态云雾慢慢浓缩,它们的核心达到一定密度后开始产生核子融合。然而,圣克鲁兹加利福尼亚大学的道格拉斯&斯波尔、安阿伯市密歇根大学的凯瑟琳&弗里瑟和盐湖城犹他大学的保罗&冈朵罗表示,以前的研究没有考虑到暗物质的发源地对恒星形成的影响。他们在研究暗物质时,发现它对第一批恒星有着意义深远的影响。
  目前还不清楚这是一种什么样的影响,因为现在还没有人知道暗物质是什么,天文学家仅发现它对常规物质施加的重力牵引力。但是斯波尔和他的同事表示,如果像很多科学家预料的那样,它是由相互作用微弱的大质量粒子或WIMP粒子组成,它将改变我们对早期宇宙的理解。他们利用一种被称作&中性子&的候选WIMP粒子进行预测,结果发现,作为一种收缩的原始气云,它已经达到了极限密度,在暗物质粒子的束缚下,它们相互结合。它们在接触时相互消灭对方,产生电子和光子,释放出来的能量被堆积在云团中。
  红外光
  这个过程加热了云层,导致云雾停止收缩,所以,它跟一般的恒星一样,从暗物质湮灭中获得的支持比从核子融合中获得的更多。这种&暗星&的体积将和太阳一样,并发出红外光波。根据中性子的质量,它的体积可能会更大,它在我们的太阳系中的跨度可能大约是从太阳到天王星的距离的60倍。美国奥斯汀德克萨斯大学的沃尔克&布鲁姆说:&将它称作暗星有些用词不当,它用来抵御重力的内能来源与其他暗星的来源完全不同。它是一颗发出淡红色光的气态球体。&布鲁姆是研究宇宙中的第一批恒星的专家,他不是这个科研组的成员。
  现在这些恒星是否仍然存在?研究人员回答说,根据中性子的质量,它们很有可能仍然存在。斯波尔告诉《新科学家》杂志说:&它们可能在我们的银河系中飞来飞去。&如果是那样的话,宇宙中的第一代恒星,即所谓的星族III恒星,将比我们以前认为的&更加与众不同。&科研组成员弗里瑟告诉《新科学家》说,除了氢和氦以外,几乎宇宙中的所有元素都在恒星内进行锻造加工,&第一批恒星只是这个过程的第一步。&如果第一批恒星是黑暗的, &这个过程可能被推迟甚至是中止。&
  原始云团
  美国加利福尼亚州斯坦福大学的埃格尔&莫卡伦库进行评论说:&我们通过这项研究可能会发现,早期恒星的形成和元素的合成与我们以前认为的有很多不同之处。如果果真如此,我们不得不证明暗物质存在于我们的每一个身体细胞中。&其他星族III恒星是在早期的星系中形成,而不是在孤立的暗物质发源地形成。它们释放的第一批重元素导致宇宙产生。这显示重元素不可能穿越,遍及整个宇宙,因为早期星系中的这些恒星主要集中在重元素充足的环境中,而其他环境就相对比较空荡。如果天文学家能在宇宙中发现真正的原始气态云,他们就找到了能证明第一批恒星是暗星的线索。
  同样,科学家认为第一批恒星有助于发生几百万年后的宇宙电离过程,这让它能被紫外线穿透。这一现象涉及到&电离过程&,因为在宇宙大爆炸后,宇宙立刻变成由带电粒子组成的&一碗滚烫的汤&。37万年或更多年后,它们冷却下来,达到离子与中性原子结合的程度。
  微观和宏观
  布鲁姆表示,如果第一批恒星是黑暗的,这暗示出早期的侏儒星系中的恒星导致宇宙中出现二次电离。弗里瑟说:&让我感到兴奋的其他事情是,我们可能将获得新型恒星,并能设法寻找这些事物。&恒星中的暗物质湮灭产生微中子,南极的南极介子及中微子探测列阵和元谷冰钻等探测器可能会发现这些微中子。预计将于2008年发射的美国宇航局的空望远镜(GLAST)飞船将能捕捉到在同一过程产生的光子的迹象。布鲁姆表示,这项研究纯属推理,因为当提到暗物质的性能时,有很多自由度无法让人信服。但是他说,该研究有助于填平有关粒子物理学的暗物质研究,和它对天文学物体的影响之间的鸿沟。他告诉《新科学家》杂志说:&这是第一份将微观物理学和宏观物理学紧密结合的论文,它非常有意思。&
您可能感兴趣的文章揭秘暗星:暗物质驱动的奇异恒星
宇宙起源于137亿年前,而宇宙中的第一代&居民&&&恒星&&则要等到大爆炸之后大约1亿年才会闪亮登场。即便根据恒星的标准,第一代恒星也都是&巨人&。它们要比现如今的任何一颗恒星都更大、更亮、燃烧得也更快。下面就和小编去了解一下吧。
不过,如果有关恒星形成的一个新理论是正确的话,那么第一代恒星会比科学家们先前想象得还要更奇特,原因就在于它们和暗物质之间的相互作用。暗物质是一种不可见的&物质&,它们占据了宇宙物质的80%。类似我们太阳的恒星通过把较轻的元素聚变成较重的来与其自身巨大的引力相抗衡免于坍缩。但物理学中一些最流行的理论认为,组成暗物质的粒子同时也是自身的反粒子。这就带来了一种有趣的可能性,第一代恒星的能源可以源自聚集在其核心处的暗物质的自湮灭过程。
广播电视节目许可证:(京)字第07618号
北京市网监中心备案编号:55号
驱动中国官方微信
(C)驱动中国&Qudong.com &All Rights Reserved 版权所有&复制必究&京ICP备号广播电视节目许可证:(京)字第07618号您所在的位置:
世界最牛望远镜有望解开暗物质之谜
日06:03  
最牛望远镜专给星星做“户口普查”
南京有架“光谱之王”天体望远镜,有望解开暗物质之谜
本报讯昨天,是南京天文光学技术研究所成立五十周年的日子,大天区面积光纤光谱天文望远镜(LAMOST项目)总工程师、该所崔向群所长介绍,和我们常见的望远镜不同,有“光谱之王”美誉的LAMOST天文望远镜现在可以同时为4000个天体进行“户口普查”,是目前世界上天体光谱获取率最高的望远镜。
? | ?推广 |
1609年,意大利科学家伽利略用透镜制造出了一架“折射式望远镜”(人类第一架天文望远镜)。当伽利略第一次将望远镜指向星空时,一场对宇宙和人类自身看法的新变革开始了。400年来,望远镜的用途大多只是观测有多少星星,它们有多亮,它们的位置是什么。而且,很多亮度很低的“暗星”,一般望远镜是难以“企及”的。
在南京天光所里,有一个天文观测台,大小和两层小楼房差不多,“这个观测台的面积只是LAMOST的十分之一。”崔所长说,如今坐落在国家天文台河北兴隆观测站的LAMOST,主镜由37块对角线长1.1米、厚度为75毫米的六角形球面子镜组成,改正镜由24块对角线长1.1米、厚度为25毫米的六角形平面子镜组成,体积庞大。
“LAMOST不怕‘暗星’,”崔所长说,目前它可以观测到20.5星等的天体。“20.5星等的天体极其暗弱,肉眼可见的最暗星也比它明亮50万倍。”崔所长说,更值得一提的是,宇宙中暗物质、暗能量的本质和来源,已经成为宇宙学和物理学研究中的一大难题,LAMOST在今后的研究中,将有望揭开它们神秘的“面纱”。“2009年,LAMOST将进行更精细的调试,观测研究能力也会更强,越暗的天体观测得越灵敏。”
不光有“火眼金睛”,LAMOST还有一个重要的“本领”,就是为天体进行“户口普查”。“也就是能获得光谱。”崔所长说,早在1666年,牛顿用三棱镜分解日光,发现白光是由不同颜色的光混合而成,透镜对不同颜色的光有不同的折射,而由此产生的这些彩虹般的色序就是“光谱”。“光谱”就像是每个天体的“户口本”一样,包含了天体化学组成、速度在内的所有物理、化学信息。
在前不久,LAMOST获得了接收4000条天体光谱的能力,与国际上迄今为止最多的一次观测600多条天体光谱的系统相比,LAMOST已成为世界上光谱观测获取率最高的望远镜。 (朱 姝)
更多关于“”的新闻
( 00:20:43)
( 15:20:12)
( 08:28:14)
( 10:29:53)
( 18:32:00)
( 10:23:05)
( 09:44:45)
请您文明上网、理性发言并遵守
同时更新资讯所属地
暂无更新,休息一会儿
白羊座(03.21-04.19)
金牛座(04.20-05.20)
双子座(05.21-06.21)
巨蟹座(06.22-07.22)
狮子座(07.23-08.22)
处女座(08.23-09.22)
天秤座(09.23-10.23)
天蝎座(10.24-11.22)
射手座(11.23-12.21)
摩羯座(12.22-01.19)
水瓶座(01.20-02.18)
双鱼座(02.19-03.20)
今日运势:
本日可多参与公众事务,将自己的意见与兴趣结合,提供同好们做参考,让欢乐的气氛添加一些趣味性...
Copyright & 1998 - 2018 Tencent. All Rights Reserved揭秘暗星:暗物质驱动的奇异恒星揭秘暗星:暗物质驱动的奇异恒星橙子说科学百家号宇宙起源于137亿年前,而宇宙中的第一代“居民”——恒星——则要等到大爆炸之后大约1亿年才会闪亮登场。即便根据恒星的标准,第一代恒星也都是“巨人”。它们要比现如今的任何一颗恒星都更大、更亮、燃烧得也更快。下面就和小编去了解一下吧。不过,如果有关恒星形成的一个新理论是正确的话,那么第一代恒星会比科学家们先前想象得还要更奇特,原因就在于它们和暗物质之间的相互作用。暗物质是一种不可见的“物质”,它们占据了宇宙物质的80%。类似我们太阳的恒星通过把较轻的元素聚变成较重的来与其自身巨大的引力相抗衡免于坍缩。但物理学中一些最流行的理论认为,组成暗物质的粒子同时也是自身的反粒子。这就带来了一种有趣的可能性,第一代恒星的能源可以源自聚集在其核心处的暗物质的自湮灭过程。这些“暗星”的温度要比由核聚变维系的恒星低,但个头会更为庞大。“它们仍然是恒星,主要由氢和氦组成。暗物质的比重小于总质量的1%,”美国密歇根大学的KatherineFreese说。Freese和美国犹他大学的Paolo Gondolol以及加州大学圣克鲁兹分校的DougSpolyar一起于2006年首次研究了暗星。他们说,如果暗星存在,它们会通过推迟第一代“正常”恒星——被称为星族Ⅲ——的形成10亿年来改变早期宇宙中的化学组成。暗星同时还能解释为什么超大质量黑洞能在大爆炸之后不久如此快速地形成。什么是暗物质?科学家还没有确认暗物质粒子的属性,但许多物理学家认为它们是弱相互作用大质量粒子。超对称理论预言了这些飘渺的粒子,它同时还提出所有已知的粒子都具有大质量的伙伴粒子,其中的绝大部分自大爆炸以来就已经衰变了。因为幸存的弱相互作用大质量粒子和会普通物质仅仅通过弱核力和引力——自然界中最弱的两种力——发生相互作用,所以要想探测这些粒子是极其困难的暗星演化在大爆炸之后,宇宙是一片由均匀分布的粒子组成的海洋,没有结构,没有光亮。这些粒子中有一小部分是我们熟悉的普通重子物质,但其余的绝大部分则是暗物质。随着时间的流逝,暗物质粒子并合形成了复杂的蛛网状结构,其中的细丝会相交形成结点——暗物质晕。受到大质量晕的引力吸引,重子物质会沿着这些纤维状结构运动,并且在晕中聚集成气体云。它们会在自身的引力作用下坍缩成发光的气体结,形成第一代的原恒星。随着原恒星质量的增大,体积会不断减小,直到它们的核心达到了能启动核聚变的临界密度和温度。在这一标准图像中,暗物质晕就是恒星的温床,正是在那里重子物质得以聚集并最终孵化出恒星,不过暗物质并没有直接影响恒星的形成。然后,Freese以及同事提出的计算机模型正在挑战这一观点。“在标准模型中,一片原恒星云会坍缩直到它体积、密度和温度足以点燃核聚变,”Freese说,“我们要说的是,这里存在一个中间阶段,在很长的一段时间里暗物质可以为它提供能量。”在这部修改过的恒星演化史中,暗物质不再仅仅是第一代恒星登场演出的背景。早期宇宙中暗物质的空间密度要比现在的高得多,因为当时的宇宙仍处于膨胀的早期比现在要小得多。因此第一代恒星会沉浸在暗物质中。像风一样,暗物质也会吹拂着第一代恒星。第一代原恒星会吸引暗物质粒子并把它们聚集到自己的核心。如果原恒星中暗物质的密度超过了一定的阈值,这些粒子就会碰撞并且自湮灭发射出高能光子、中微子和电子。在暗物质自湮灭的过程中,物质会以比普通核反应高得多的效率转化成能量,因此少量的暗物质就能为整颗恒星提供能量。重要的是,暗物质的“燃烧”可以阻止原恒星进一步引力坍缩,在它的核能引擎被启动前的胚胎期使之“冻结”。结果是,暗星会异常的庞大,比正常的星族Ⅲ还要巨大。它们的直径可以从1个天文单位(日地平均距离)到大约30个天文单位——相当于从太阳到海王星的距离。同时,鉴于一颗正常的星族Ⅲ恒星可以达到100个太阳质量,最近的研究认为,最大的暗星质量也许会在1,000~10,000个太阳质量之间。暗星看上去会呈类似太阳的橙黄色,但由于其巨大的表面积它们中最大的可能会比太阳亮上十亿倍。“相比之下,标准星族Ⅲ恒星的温度会更高、颜色也更蓝,”Freese说。计算机模拟预言,只要周围暗物质密度足够高,暗星就可以存在。在最差的情况下,暗星应该可以存在大约100万年。如果暗物质晕非常大或者有从外界来的暗物质粒子注入,它们甚至可以存在数十亿年。一些原初的暗星还有可能幸存至今。“我们也许会发现这些仍然在发光的第一代恒星。那就太棒了,”美国斯坦福大学的IgorMoskalenko说。宇宙的结果一旦暗物质能源被耗尽,暗星的命运将取决于它的质量。仅有几百个太阳质量的暗星在用完暗物质储备之后会“解冻”。它们会转变为正常的由核聚变驱动的恒星,并且继续存在上几百万左右,直到超新星爆发把自身的重元素播撒到宇宙中去。但是对于最大质量的暗星要想重回普通恒星的生活却是不可能的。它们令人难以置信的质量会使得它们直接坍缩成黑洞。暗星因此可以解释类星体——中心具有超大质量黑洞的明亮星系——是如何在大爆炸之后仅数亿年就已经存在的,这比目前绝大部分的理论预言都要早。“在目前的理论中,如果没有暗星,一个只有几个太阳质量的黑洞没有足够的时间能成长为可以解释类星体所需的百万太阳质量的黑洞,”Gondolo说。暗星也许还在终结宇宙的黑暗时代上发挥了作用。宇宙的黑暗时代是大爆炸之后的一个完全黑暗时期,新生的氢和氦原子吸收了宇宙中的所有光。按照标准理论,需要不同代恒星和星系的紫外光来瓦解或者电离这些原子,使得宇宙变得透明。但暗星可以造就出更大、更强劲的由聚变产能的恒星,这可以加速宇宙再电离的过程。Freese说,暗星还可以通过推迟标准星族Ⅲ恒星的形成来推迟再电离。“我对此无所适从,”她说,“暗星会影响再电离,但我们并不知道它会朝哪个方向发展。”美国哈佛大学史密松天体物理中心的LarsHernquist说,暗星无疑会改变很多事情。“因为这些恒星是寿命远比1百万年长得多的辐射源,那么早期宇宙看上去就会大为不同,”他说。但Hernquist也补充说,虽然暗星很有趣,但它们也还是猜测,“因为科学家所使用的模型利用了一些假设,而且他们的计算也相当地简单。”例如,史密松天体物理中心的AviLoeb说,暗物质晕稠密的中心区域——被称为尖点——在和重子物质的相互作用中很容易就能被瓦解。“除非有三维数值模拟能坚实地证明这些尖点的存在,否则我不相信暗星会真实存在,”Loeb说。寻找暗星暗星的首个证据也许并不会来自计算机模型,而是来自天文学家。法国巴黎天体物理研究所的FabioIocco认为,暗星会推迟标准星族Ⅲ恒星的超新星爆发几千万到几亿年。“最好的证据也许就是能找到由于暗星机制而导致的星族Ⅲ超新星爆发的推迟,”Iocco说。科学家怀疑,如果这一推迟时间足够长,未来的空间望远镜就能观测到第一代的超新星爆发。下一代卫星也许还能探测到早已消失的原初暗星所发出的光。理论预言,来自早期暗星的光在到达我们这里的时候会被“移动”到远红外波段。“我们寄希望于詹姆斯·韦布空间望远镜上的红外探测器,但暗星最终也有可能太暗而无法被它探测到,”Gondolo说,“因此我们还在探索其他方法。”另外,空间探测器还可以寻找一直幸存至今的、被冻结的暗星。质量以及化学组成和由聚变驱动的恒星一样,但暗星的体积会更大、温度也会更低。它们的温度会和太阳类似,但亮度大约是太阳的100万倍。如果天文学家发现一颗恒星具有这些奇特的性质,它就有可能是自宇宙创生至今一直陪伴在我们身边的这些天体存在的证据。本文由百家号作者上传并发布,百家号仅提供信息发布平台。文章仅代表作者个人观点,不代表百度立场。未经作者许可,不得转载。橙子说科学百家号最近更新:简介:青春是道明媚的忧伤作者最新文章相关文章}

我要回帖

更多关于 暗物质卫星 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信