什么是退耦电容叫做相对退耦,绝对退耦呢

文章摘自:凌力尔特技术论坛-与非网(
& && & 退偶电容一般都是放在电路中的每一级节点之后,靠近单元供电位置,越近越好,根据工作频率和耗电量可用电解+104的小电容比如一个音频电路中有一级前置 小信号放大,一级缓冲,一级功率放大,这个电路就可以分为三个单元,假如你用的电路为TDA2030和LM5532,那么退偶电容就分别放在2030和 5532的电源供电引脚处,越近越好,可以在2030附近放一个几百微法的电解和一个10的瓷片,在5532的供电脚放一个几十或者几百微法的电解和一个 104的瓷片退偶,顾名思义就是退除、消除来自上一级的信号耦合,我们在设计一个双声道的音频电路时,如果电路做的不好,即便是两个声道的放大部分完全独 立,但电源是公用的,如果退偶做的不够好,就会产生串音干扰,如果加上了退偶电容,你会发现情况就会有所改善低频电路相对要好...
& && && &退耦,就是消除高频杂波的影响。高频杂波的影响,主要是对有源元件,比如放大器、解调器,等等,杂波可以从元件的管脚、PCB的引线等等地方串入。为了 消除或减少杂波对这些元件的影响,就要尽量在杂波进入元件之前把杂波滤掉。所以去耦电容靠元件越近,杂波可能串入的量就越少。
  用在退耦电路中的电容称为退耦电容,退耦电容并接于电路正负极之间,可防止电路通过电源形成的正反馈通路而引起的寄生振荡。所谓退耦,即防止前后电路 电流大小变化时,在供电电路中所形成的电流冲动对电路的正常工作产生影响,换言之,退耦电路能够有效地消除电路之间的寄生耦合。
& && &&&这是一个DeCap,也就是所谓的退耦电容,并不是旁路滤波电容(bypass)。主要是用来抑制IC内部的杂讯,如振荡器的多次谐波等传到电源里 而干扰其它电路的。只要想象一下,杂讯是从IC内部向外走的,而不是从外部电源向IC内走的就理解了。图1到5里,噪声从的地线和电源线出来的后,在到达 这个退耦电容之前已经通过过孔的支路跑到其它电路里去了,当然是不行的。关于退耦电容和滤波电容,请参考伦德全的《电路板级的电磁兼容设计》的论文。
进一步:这种位置的电容,一般有两个作用。
一是为IC电源提供瞬间工作所需的大电流(也有的叫旁路);
二是作为一种去耦的作用,即去除IC产生的高频杂信,使其不要传递到电源层或地层 。
对于第一种情况,不一定非要经过电容后,才接到IC的电源或地引脚,但要尽量的靠近。典型的例子是BGA封的去耦合电容,一般都放在背面。尽量靠近的情况 下,也要注意电容到电源和地平面的布线,越短、越粗越好;否则会引入布线电感。因瞬时电源的补给也是找最短阻抗路径的,过大的分布电感会带来不利因素。
对于第二种情况,
。。。。。
与非门科技(北京)有限公司 All Rights Reserved.
京ICP证:070212号
北京市公安局备案编号: 京ICP备:号退耦电容,decoupling capacitance,音标,读音,翻译,英文例句,英语词典
说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置: ->
-> 退耦电容
1)&&decoupling capacitance
This paper analyzes the effects of the input and output decoupling capacitances on the grounding current EMI in DC motor drives.
本文针对直流电机调速装置输入和输出侧退耦电容对地电流干扰的影响进行研究。
2)&&Capacitance coupling
Technical analysis for capacitance coupling to
对电容耦合传递电压的技术分析
Energy recovery circuit with
采用电容耦合的能量回收电路
It presents a new,easy methodmulti-pair capacitance coupling measurement and demonstrates the effectiveness of the new method.
分析了传统的通信电缆线对电容不平衡测试方法的不足,提出简便和新颖的多线对电容耦合测试方法,并给予了证明。
3)&&Decoupling capacitor
Application of decoupling capacitor in PCB
去耦电容在PCB板设计中的应用
EMC problems should be considered in the design of high-speed circuits and the reasonable application of decoupling capacitor plays a very important role in avoiding EMI.
在高速电路设计中应充分考虑电磁兼容方面的问题,合理地使用去耦电容在电磁兼容防止电磁干扰中具有重要作用。
In the computer CPU power circuit, electrolytic capacitors are used as decoupling capacitors of power.
在计算机CPU的电源电路中,采用电解电容器作为电源的去耦电容。
4)&&Capacitive coupling
This paper analyzes in theory the phase characteristics of double tuned circuits and capacitive coupling circuits, discusses the rules by which they change with temperatures, and puts forward the optimum linear design formula of actual tuned circuits.
从理论上分析了双调谐电感、电容耦合电路的相位特性 ,阐述了随其温度变化的规律 ,并给出实际调谐电路线性最佳设计的公式。
Using self-made device, the functions of preventing electromagnetic interference of coaxial cable are studied, such as the capacitance coupling frequency characteristics, the shielding effects of the capacitive coupling and the inductive coupling.
利用自制实验装置 ,研究了同轴电缆的电容耦合频率特性、电容耦合屏蔽效果、电感耦合屏蔽效果 。
It sets up switch mechanical models and electromagnetic models with ohmic contact and capacitive coupling RF MEMS switches.
建立了欧姆接触式和电容耦合式RF MEMS开关的力学模型和电磁模型,其中包括悬臂梁和固支梁开关的弹性系数、下拉电压、电容和阻抗。
5)&&coupling capacitance
Analysis of shielding effect on coupling capacitance between heatsink and power electronic device by FDTD
用FDTD法分析散热片屏蔽层对耦合电容的时频特性影响
The computational formulations of the self capacitance and coupling capacitance is derived.
文章提出用边界元法分析多圆柱内导体屏蔽矩形板线的特性阻抗问题 ,推导出用边界元法计算多圆柱内导体屏蔽矩形板线的自电容、耦合电容计算公式。
By enhancing reasonable monitoring on equipments and decreasing coupling capacitance, product quality increases dramatically.
通过加强设备科学管理监控,减小耦合电容效应等一系列改善措施,产品质量得到了很大程度的提升,Vertical Block Mura从改善前的26。
6)&&coupling capacitor
Multilayer ceramic bandpass filter with coupling capacitor;
带有耦合电容的多层陶瓷带通滤波器
It is important that how to ascertained the coupling coefficient and selected the coupling capacitor,in the design of the capacitor coupling circuit.
因此,耦合系数的确定与耦合电容的选择是该电路设计中的一个重要问题。
A method to design the value of coupling capacitor in coupled high-resolution charge-scaling DAC is presented.
介绍了耦合结构高分辨电荷按比例缩放DAC级间耦合电容值的设计方法,讨论了寄生电容对DAC精确度的影响。
补充资料:耦中有耦
&&&&  中国北宋王安石提出的重要哲学命题。出自其《洪范传》。"耦"即"对",王安石用以表述对立的概念。他认为,宇宙万物是由水、火、木、金、土五种物质元素构成的。五行具有"时"、"位"、"材"、"气"、"性"、"形"、"事"、"情"、"色"、"声"、"臭"、"味"等属性。不同元素的同一属性是两两相对的。如就"位"言,火上而水下;就"性"言,水润而火熯;就"形"言,水平而火锐;就"材"言,火革而金从革。他把这种对立,叫作"五行之为物,其时、其位、其材、其气、其性、其形、其事、其情、其色、其声、其臭、其味,皆各有耦"。他又认为,每一元素的不同性质,如"气"与"味"之间也存在着对立:"生物者,气也;成之者,味也。以奇生则成而耦,以耦生则成而奇。寒之气坚,故其味可用以耎;热之气耎,故其味可用以坚。风之气散,故其味可用以收;燥之气收,故其味可用以散。"由于这种对立处于各元素的对立之中,故王安石称之为"耦之中又有耦"。他认为,由于五行"皆各有耦"、"耦之中又有耦"、"万物之变遂至于无穷"。    王安石"耦中有耦"的命题,揭示了世界处于无穷无尽矛盾之中的状况,猜测到宇宙万物发展的根本原因。  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。积分17612&金币25 &铜板17565 &交易积分0 &技术积分22 &RMB0 &注册时间&
转自职业高中教材,学霸们鉴别下
(591.77 KB)
下载次数:39
(589.45 KB)
下载次数:34
简单一点他容易理解:所谓退耦,就是在同一个电路用同一个电源,工作时后级工作电流比较大,电源就会跟随信号产生和信号一样的波峰,所以要串电阻后并电容去消除
应该说任何一级都会
爱我中华,抵制日货,
电话 微信:
积分4659&金币0 &铜板4652 &交易积分0 &技术积分7 &RMB0 &注册时间&
必须要有两个才为耦
ningokc 发表于
电源就一个该和谁“耦”呀?
积分2043&金币0 &铜板2034 &交易积分0 &技术积分9 &RMB0 &注册时间&
本帖最后由 zgl 于
10:20 编辑
各管(级)G1\G2\G3之间的耦合
加大这个电容,确实可以降低噪声
积分4659&金币0 &铜板4652 &交易积分0 &技术积分7 &RMB0 &注册时间&
本帖最后由 zhke 于
13:30 编辑
转自职业高中教材,学霸们鉴别下
EL34 发表于
仔细的学习了~
但总觉得近来坛中那几帖的观点都与之相悖呢~
是俺没领会透还是近代发明的新理论俺没学到?
积分17612&金币25 &铜板17565 &交易积分0 &技术积分22 &RMB0 &注册时间&
仔细的学习了~
但总觉得近来坛中那几帖的观点都与之相悖呢~
是俺没领会透还是近代发明的 ...
zhke 发表于
相信教材还是相信大师?这是个问题
本来是一个很基础的问题,很多人就不学习一下,老爱凭想象瞎扯
同意,典型浪费资源帖!
积分4747&金币0 &铜板4747 &交易积分0 &技术积分0 &RMB0 &注册时间&
学习中。。。。。。。。。
积分2180&金币0 &铜板2179 &交易积分0 &技术积分1 &RMB0 &注册时间&
ddddddddddddddddd
[通过 QQ、MSN 分享给朋友]耦合与退耦,上拉与下拉!
耦合与退耦
什么是耦合电容?什么是去耦电路?
耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。
退耦是指对电源采取进一步的滤波措施,去除两级间信号通过电源互相干扰的影响。耦合常数是指耦合电容值与第二级输入阻抗值乘积对应的时间常数。
退耦有三个目的:
1.将电源中的高频纹波去除,将多级放大器的高频信号通过电源相互串扰的通路切断。
2.大信号工作时,电路对电源需求加大,引起电源波动,通过退耦降低大信号时电源波动对输入级/高电压增益级的影响;
3.形成悬浮地或是悬浮电源,在复杂的系 统中完成各部分地线或是电源的协调匹 有源器件在开关时产生的高频开关噪声将沿着电源线传播。去耦电容的主要功能就是提供一个局部的直流电源给有源器件,以减少开关噪声在板上的传播和将噪声引导到地。
摘引自伦德全《电路板级的电磁兼容设计》一文,该论文对噪声耦和路径、去耦电容和旁路电容的使用都讲得不错。请参阅。
干扰的耦合方式
干扰源产生的干扰信号是通过一定的耦合通道对电控系统发生电磁干扰作用的。干扰的耦合方式无非是通过导线、空间、公共线等作用在电控系统上。
分析下来主要有以下几种。
直接耦合:这是干扰侵入最直接的方式,也是系统中存在最普遍的一种方式。如干扰信号通过导线直接侵入系统而造成对系统的干扰。对这种耦合方式,可采用滤波去耦的方法有效地抑制电磁干扰信号的传入。
公共阻抗耦合:这也是常见的一种耦合方式。常发生在两个电路的电流有共同通路的情况。公共阻抗耦合有公共地和电源阻抗两种。防止这种耦合应使耦合阻抗趋近于零、使干扰源和被干扰对象间没有公共阻抗。
电容耦合:又称电场耦合或静电耦合,是由于分布电容的存在而产生的一种耦合方式。
电磁感应耦合:又称磁场耦合。是由于内部或外部空间电磁场感应的一种耦合方式,防止这种耦合的常用方法是对容易受干扰的器件或电路加以屏蔽。
辐射耦合:电磁场的辐射也会造成干扰耦合,是一种无规则的干扰。这种干扰很容易通过电源线传到系统中去。另当信号传输线较长时,它们能辐射干扰波和接收干扰波,称为大线效应。
漏电耦合:所谓漏电耦合就是电阻性耦合。这种干扰常在绝缘降低时发生。记得以前我的观点是:去藕电容一般容量比较大,也就是避免噪声耦合到其他部分的意思;旁路电容容量小,提供低阻抗的噪声回流路径。 其实这种说法也可以算没有什么大错误。但是经过偶查阅了相关资料,才发现其实decouple和bypass从根本上来说没有任何区别,两者在称谓上可以互换。两者的作用低俗一点说:当电源用。
所谓噪声其实就是电源的波动,电源波动来自于两个方面:电源本身的波动,负载对电流需求变化和电源系统相应能力的差别带来的电压波动。而去藕和旁路电容都是相对负载变化引起的噪声来说。所以他们两个没有必要做区分。而且实际上电容值的大小,数量也是有理论根据可循的,如果随意选择,可能会在某些情况下遇到去藕电容(旁路)和分布参数发生自激振荡的情况。所以真正意义上的去藕和旁路都是根据负载和供电系 统的实际情况来说的。没有必要去做区分,也没有本质区别。
电容是板卡设计中必用的元件,其品质的好坏已经成为我们判断板卡质量的一个很重要的方面。
①电容的功能和表示方法。
由两个金属极,中间夹有绝缘介质构成。电容的特性主要是隔直流通交流,因此多用于级间耦合、滤波、去耦、旁路及信号调谐。电容在电路中用“C”加数字表示,比如C8,表示在电路中编号为8的电容。
②电容的分类。
电容按介质不同分为:气体介质电容,液体介质电容,无机固体介质电容,有机固体介质电容电解电容。按极性分为:有极性电容和无极性电容。按结构可分为:固定电容,可变电容,微调电容。
③电容的容量。
电容容量表示能贮存电能的大小。电容对交流信号的阻碍作用称为容抗,容抗与交流信号的频率和电容量有关,容抗XC=1/2πf c (f表示交流信号的频率,C表示电容容量)。
④电容的容量单位和耐压。
电容的基本单位是F(法),其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF)。由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。换算关系:1F=1000000μF,1μF=1000nF=1000000pF。
每一个电容都有它的耐压值,用V表示。一般无极电容的标称耐压值比较高有:63V、100V、160V、250V、400V、600V、1000V等。有极电容的耐压相对比较低,一般标称耐压值有:4V、6.3V、10V、16V、25V、35V、50V、63V、80V、100V、220V、400V等。
⑤电容的标注方法和容量误差。
电容的标注方法分为:直标法、色标法和数标法。对于体积比较大的电容,多采用直标法。如果是0.005,表示0.005uF=5nF。如果是5n,那就表示的是5nF。
数标法:一般用三位数字表示容量大小,前两位表示有效数字,第三位数字是10的多少次方。如:102表示10x10x10 PF=1000PF,203表示20x10x10x10 PF。 nn色标法,沿电容引线方向,用不同的颜色表示不同的数字,第一、二种环表示电容量,第三种颜色表示有效数字后零的个数(单位为pF)。颜色代表的数值为:黑=0、棕=1、红=2、橙=3、黄=4、绿=5、蓝=6、紫=7、灰=8、白=9。
电容容量误差用符号F、G、J、K、L、M来表示,允许误差分别对应为±1%、±2%、±5%、±10%、±15%、±20%。
⑥电容的正负极区分和测量。
电容上面有标志的黑块为负极。在PCB上电容位置上有两个半圆,涂颜色的半圆对应的引脚为负极。也有用引脚长短来区别正负极长脚为正,短脚为负。
当我们不知道电容的正负极时,可以用万用表来测量。电容两极之间的介质并不是绝对的绝缘体,它的电阻也不是无限大,而是一个有限的数值,一般在1000兆欧以上。电容两极之间的电阻叫做绝缘电阻或漏电电阻。只有电解电容的正极接电源正(电阻挡时的黑表笔),负端接电源负(电阻挡时的红表笔)时,电解电容的漏电流才小(漏电阻大)。反之,则电解电容的漏电流增加(漏电阻减小)。这样,我们先假定某极为“+”极,万用表选用R*100或R*1K挡,然后将假定的“+”极与万用表的黑表笔相接,另一电极与万用表的红表笔相接,记下表针停止的刻度(表针靠左阻值大),对于数字万用表来说可以直接读出读数。然后将电容放电(两根引线碰一下),然后两只表笔对调,重新进行测量。两次测量中,表针最后停留的位置靠左(或阻值大)的那次,黑表笔接的就是电解电容的正极。 nn⑦电容使用的一些经验及来四个误区。
一些经验:在电路中不能确定线路的极性时,建议使用无极电解电容。通过电解电容的纹波电流不能超过其充许范围。如超过了规定值,需选用耐大纹波电流的电容。电容的工作电压不能超过其额定电压。在进行电容的焊接的时候,电烙铁应与电容的塑料外壳保持一定的距离,以防止过热造成塑料套管破裂。并且焊接时间不应超过10秒,焊接温度不应超过260摄氏度。
四个误区:
●电容容量越大越好。
很多人在电容的替换中往往爱用大容量的电容。我们知道虽然电容越大,为IC提供的电流补偿的能力越强。且不说电容容量的增大带来的体积变大,增加成本的同时还影响空气流动和散热。关键在于电容上存在寄生电感,电容放电回路会在某个频点上发生谐振。在谐振点,电容的阻抗小。因此放电回路的阻抗最小,补充能量的效果也最好。但当频率超过谐振点时,放电回路的阻抗开始增加,电容提供电流能力便开始下降。电容的容值越大,谐振频率越低,电容能有效补偿电流的频率范围也越小。从保证电容提供高频电流的能力的角度来说,电容越大越好的观点是错误的,一般的电路设计中都有一个参考值的。
●同样容量的电容,并联越多的小电容越好,耐压值、耐温值、容值、ESR(等效电阻)等是电容的几个重要参数,对于ESR自然是越低越好。
ESR与电容的容量、频率、电压、温度等都有关系。当电压固定时候,容量越大,ESR越低。在板卡计中采用多个小电容并连多是出与PCB空间的限制,这样有的人就认为,越多的并联小电阻,ESR越低,效果越好。理论上是如此,但是要考虑到电容接脚焊点的阻抗,采用多个小电容并联,效果并不一定突出。
●ESR越低,效果越好。
结合我们上面的提高的供电电路来说,对于输入电容来说,输入电容的容量要大一点。相对容量的要求,对ESR的要求可以适当的降低。因为输入电容主要是耐压,其次是吸收MOSFET的开关脉冲。对于输出电容来说,耐压的要求和容量可以适当的降低一点。ESR的要求则高一点,因为这里要保证的是足够的电流通过量。但这里要注意的是ESR并不是越低越好,低ESR电容会引起开关电路振荡。而消振电路复杂同时会导致成本的增加。板卡设计中,这里一般有一个参考值,此作为元件选用参数,避免消振电路而导致成本的增加。
●好电容代表着高品质。
“唯电容论”曾经盛极一时,一些厂商和媒体也刻意的把这个事情做成一个卖点。在板卡设计中,电路设计水平是关键。和有的厂商可以用两相供电做出比一些厂商采用四相供电更稳定的产品一样,一味的采用高价电容,不一定能做出好产品。衡量一个产品,一定要全方位多角度的去考虑,切不可把电容的作用有意无意的夸大。
上拉与下拉
上拉电阻:
1、当TTL电路驱动COMS电路时,如果TTL电路输出的高电平低于COMS电路的最低高电平(一般为3.5V),这时就需要在TTL的输出端接上拉电阻,以提高输出高电平的值。
2、OC门电路必须加上拉电阻,才能使用。
3、为加大输出引脚的驱动能力,有的单片机管脚上也常使用上拉电阻。
4、在COMS芯片上,为了防止静电造成损坏,不用的管脚不能悬空,一般接上拉电阻产生降低输入阻抗,提供泄荷通路。
5、芯片的管脚加上拉电阻来提高输出电平,从而提高芯片输入信号的噪声容限增强抗干扰能力。
6、提高总线的抗电磁干扰能力。管脚悬空就比较容易接受外界的电磁干扰。
7、长线传输中电阻不匹配容易引起反射波干扰,加上下拉电阻是电阻匹配,有效的抑制反射波干扰。
上拉电阻阻值的选择原则包括:
1、从节约功耗及芯片的灌电流能力考虑应当足够大;电阻大,电流小。
2、从确保足够的驱动电流考虑应当足够小;电阻小,电流大。
3、对于高速电路,过大的上拉电阻可能边沿变平缓。
综合考虑以上三点,通常在1k到10k之间选取。对下拉电阻也有类似道理
对上拉电阻和下拉电阻的选择应结合开关管特性和下级电路的输入特性进行设定,主要需要考虑以下几个因素:
1. 驱动能力与功耗的平衡。以上拉电阻为例,一般地说,上拉电阻越小,驱动能力越强,但功耗越大,设计是应注意两者之间的均衡。
2. 下级电路的驱动需求。同样以上拉电阻为例,当输出高电平时,开关管断开,上拉电阻应适当选择以能够向下级电路提供足够的电流。
3. 高低电平的设定。不同电路的高低电平的门槛电平会有不同,电阻应适当设定以确保能输出正确的电平。以上拉电阻为例,当输出低电平时,开关管导通,上拉电阻和开关管导通电阻分压值应确保在零电平门槛之下。
4. 频率特性。以上拉电阻为例,上拉电阻和开关管漏源级之间的电容和下级电路之间的输入电容会形成RC延迟,电阻越大,延迟越大。上拉电阻的设定应考虑电路在这方面的需求。
下拉电阻的设定的原则和上拉电阻是一样的。
OC门输出高电平时是一个高阻态,其上拉电流要由上拉电阻来提供,设输入端每端口不大于100uA,设输出口驱动电流约500uA,标准工作电压是5V,输入口的高低电平门限为0.8V(低于此值为低电平);2V(高电平门限值)。
选上拉电阻时:
500uA x 8.4K= 4.2即选大于8.4K时输出端能下拉至0.8V以下,此为最小阻值,再小就拉不下来了。如果输出口驱动电流较大,则阻值可减小,保证下拉时能低于0.8V即可。
当输出高电平时,忽略管子的漏电流,两输入口需200uA
200uA x15K=3V即上拉电阻压降为3V,输出口可达到2V,此阻值为最大阻值,再大就拉不到2V了。选10K可用。COMS门的可参考74HC系列
设计时管子的漏电流不可忽略,IO口实际电流在不同电平下也是不同的,上述仅仅是原理,一句话概括为:输出高电平时要喂饱后面的输入口,输出低电平不要把输出口喂撑了(否则多余的电流喂给了级联的输入口,高于低电平门限值就不可靠了)
免责声明:本文章转载于网络,版权归原作者所有。转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。如涉及作品内容、版权和其它问题,请联系我们删除!
责任编辑:
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
今日搜狐热点退耦电容和旁路电容
> 退耦电容和旁路电容
退耦电容和旁路电容
1.&&耦合,有联系的意思。 2.&&耦合元件,尤其是指使输入输出产生联系的元件。 3.&去耦合元件,指消除信号联系的元件。 4.&去耦合简称去耦。 5.&&例如,晶体管放大器发射极有一个自给偏压电阻,它同时又使信号产生压降反馈到输入端形成了输入输出信号耦合,这个电阻就是产生了耦合的元件,如果在这个电阻两端并联一个,由于适当容量的对交流信号较小的阻抗(这需要计算)这样就减小了电阻产生的耦合效应,故称此电容为去耦电容。& 电容不是理论概念,而是一个经常使用的实用方法,在50&--&60年代,这个词也就有它特有的含义,现在已不多用。电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件。例如电子管的栅极相对于阴极往往要求加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫电容。后来也有的资料把它引申使用于类似情况。& 电容分基本上可为两大类:&耦合电容,储能电容。 去耦电容在集成电路电源和地之间的有两个作用: 一方面是本集成电路的蓄能电容; 另一方面掉该器件的高频噪声。 数字电路中典型的去耦电容值是0.1μF。这个电容的分布电感的典型值是5μH。0.1μF的去耦电容有5μH的分布电感,它的并行共振频率大约在7MHz左右,也就是说,对于10MHz以下的噪声有较好的去耦效果,对40MHz以上的噪声几乎不起作用。1μF、10μF的电容,并行共振频率在20MHz以上,去除高频噪声的效果要好一些。每10片左右集成电路要加一片充放电电容,或1个蓄能电容,可选10μF左右。最好不用电解电容,电解电容是两层薄膜卷起来的,这种卷起来的结构在高频时表现为电感。要使用钽电容或聚碳酸酯电容。去耦电容的选用并不严格,可按C=1/F,即10MHz取0.1μF,100MHz取0.01μF。 & 从去耦(也叫)和旁路的结果上区分为 去耦: &&&&&&电路系统中变化的电流对系统供电电源里的电源内阻起作用,从而导致电源向电路输出实际电压产生抖动。 &&&&&&如果从电源引出一个较小的电阻,该电阻串联一个电容到地,该阻容节点就可以为需要的电子元器件供电了。虽然该阻容节点上的电位有所下降,但在该节点上的电压却会趋于稳定。这是RC积分网络的典型应用实例。该电容就是电容。 &&&&&&有时我们从电路上看不到这个从电源引出的小电阻,那是因为有电路板铜箔在当作小电阻使用。因为除了到绝对0温度时,世界上不存在真正0欧姆的电阻。 &&&&&&这就是去耦。由此可见,去耦是为了尽可能的获得稳定的供电电压的。主要是针对电源内阻而设置的,如果电源内阻为0,并且电路板铜箔电阻为0,那就真的不需要设置退耦回路了。&& 旁路: &&&&&&一个待处理的信号往往因其他各种因素(典型的如干扰)或多或少会夹杂有无用的成分,如果我们在该信号上并联一个适当的到地,那么就能压缩比该有用信号的频率高的信号,而对该有用信号不压缩或压缩的少些。这样,有用的信号顺利通过,而无用的高频信号却被“旁路”到地了。这就是旁路名称的由来。 &&&&&&那么比该有用信号的频率低的信号难道就不需要旁路(压缩)了吗?是这样的。 &&&&&&1.可用串联电容将有用信号耦合到后级,较低频率的信号不容易通过该串联电容,到后级时再旁路。 &&&&&&2.较低频率的信号不容易干扰较高频率有用的信号(需要电容旁路的无用信号频率更高)。我们只是听说过调制信号可调制载波信号,而不是载波信号去调制调制信号。 &&&&&&由此可见,旁路是针对待处理的信号的(去耦是针对供电电源的)。&
晶体管相关文章:
电容相关文章:
晶体管相关文章:
分享给小伙伴们:
我来说两句……
微信公众号二
微信公众号一}

我要回帖

更多关于 退耦电路 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信