二重积分性质的性质应用

二重积分_百度百科
清除历史记录关闭
声明:百科词条人人可编辑,词条创建和修改均免费,绝不存在官方及代理商付费代编,请勿上当受骗。
二重积分是在空间上的,同类似,是某种特定形式的和的。本质是求曲顶柱体体积。重积分有着广泛的应用,可以用来计算曲面的面积,平面薄片重心等。平面区域的二重积分可以推广为在中的(有向)曲面上进行积分,称为曲面积分。
二重积分定义
设z=f(x,y)定义在有界D上,将区域D任意分成n个子域
个子域的面积。在
上任取一点
。如果当各个子域的直径中的最大值
趋于零时,此和式的极限存在,且该极限值与区域D的分法及
的取法无关,则称此极限为函数
上的二重积分,记为
上可积,其中
称被积函数,
称为被积表达式,
称为面积元素,
称为积分区域,
称为二重积分号。
同时二重积分有着广泛的应用,可以用来计算的面积,平面薄片重心,平面薄片转动惯量,平面薄片对质点的引力等等。此外二重积分在实际生活,比如无线电中也被广泛应用。
二重积分性质
积分的线性性质
性质1 (积分可加性) 函数和(差)的二重积分等于各函数二重积分的和(差),即
性质2 (积分满足数乘) 被积函数的常系数因子可以提到积分号外,即
(k为常数)
性质3 如果在区域D上有f(x,y)≦g(x,y),则
性质4 设M和m分别是函数f(x,y)在有界闭区域D上的最大值和最小值,σ为区域D的面积,
性质5 如果在有界闭区域D上f(x,y)=k(k为常数),σ为D的面积,则Sσ=k∫∫dσ=kσ。
二重积分中值定理
设函数f(x,y)在有界闭区域D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得
二重积分意义
当被积函数大于零时,二重积分是柱体的体积。
当被积函数小于零时,二重积分是柱体体积负值。
二重积分几何意义
在中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。
例如二重积分
,表示的是以上半球面为顶,半径为a的圆为底面的一个曲顶柱体,这个二重积分即为半球体的体积
二重积分数值意义
二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。
,其积分区域D是由
所围成的区域。
其中二重积分是一个常数,不妨设它为A。对等式两端对D这个积分区域作二重定积分。
故这个函数的具体表达式为:f(x,y)=xy+1/8,等式的右边就是二重积分数值为A,而等式最左边根据性质5,可化为常数A乘上积分区域的面积1/3,将含有二重积分的等式可化为未知数A来求解。
二重积分直角坐标系中
当f(x,y)在区域D上可积时,其积分值与分割方法无关,可选用平行于坐标轴的两组直线来分割D,这时每个小区域的面积Δσ=Δx·Δy,因此在下,面积元素dσ=dxdy,从而二重积分可以表示为
由此可以看出二重积分的值是被积函数和积分区域共同确定的。将上述二重积分化成两次定积分的计算,称之为:化二重积分为二次积分或累次积分。
二重积分X型区域
设积分区域是由两条直线x=a,x=b(a&b),两条曲线
围成。可以表示
的区域称为X型区域,如图。
特点:穿过D内部且平行于y轴的直线,与D的边界交点数不多于两点。
如左图,对任意取定的x0∈[a,b],过点(x0,0,0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面是以区间
为底,z=f(x0,y)为曲边的曲边梯形,由于x0的任意性,这一截面的面积为
,其中y是积分变量在积分过程中视x为常数。上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到
二重积分Y型区域
称为Y型区域。
特点:穿过D内部且平行于x轴的直线,与D的边界交点数不多于两点。
称D为Y型区域,此时可采用先对x,后对y积分的积分次序,将二重定积分化为累次积分
二重积分在极坐标中
有许多二重积分仅仅依靠下化为累次积分的方法难以达到简化和求解的目的。当积分区域为圆域,环域,扇域等,或被积函数为
等形式时,采用会更方便。
在直角坐标系xOy中,取原点为极坐标的极点,取正x轴为极轴,则点P的直角坐标系(x,y)与极坐标轴(r,θ)之间有关系式:
在极坐标系下计算二重积分,需将被积函数f(x,y),积分区域D以及面积元素dσ都用极坐标表示。函数f(x,y)的极坐标形式为f(rcosθ,rsinθ)。为得到极坐标下的面积元素dσ的转换,用坐标曲线网去分割D,即用以r=a,即O为圆心r为半径的圆和以θ=b,O为起点的射线去无穷分割D,设Δσ就是r到r+dr和从θ到θ+dθ的小区域,其面积为
,可得到二重积分在极坐标下的表达式:
龚德恩 范培华.经济应用数学基础(1)微积分(第二版):高等教育出版社,2012
同济大学数学系 编 .高等数学同济七版: 高等教育出版社 ,2014
本词条认证专家为
副教授审核
清除历史记录关闭豆丁微信公众号
君,已阅读到文档的结尾了呢~~
二重积分的概念与性质,二重积分的计算,二重积分,二重积分的几何意义,二重积分的计算方法,matlab二重积分,二重积分计算方法,二重积分换元,二重积分求导,极坐标二重积分
扫扫二维码,随身浏览文档
手机或平板扫扫即可继续访问
二重积分的概念与性质
举报该文档为侵权文档。
举报该文档含有违规或不良信息。
反馈该文档无法正常浏览。
举报该文档为重复文档。
推荐理由:
将文档分享至:
分享完整地址
文档地址:
粘贴到BBS或博客
flash地址:
支持嵌入FLASH地址的网站使用
html代码:
&embed src='http://www.docin.com/DocinViewer-4.swf' width='100%' height='600' type=application/x-shockwave-flash ALLOWFULLSCREEN='true' ALLOWSCRIPTACCESS='always'&&/embed&
450px*300px480px*400px650px*490px
支持嵌入HTML代码的网站使用
您的内容已经提交成功
您所提交的内容需要审核后才能发布,请您等待!
3秒自动关闭窗口二重积分的性质_百度知道
二重积分的性质
性质1 函数和(差)的二重积分等于各函数二重积分的和(差),即   ∫∫[f(x,y)±g(x,y)]dσ=∫∫f(x,y)dσ±∫∫g(x,y)dσ   性质2 被积函数的常系数因子可以提到积分号外,即   ∫∫kf(x,y)dσ=k∫∫f(x,y)dσ (k为常数)   性质3 如果在区域D上有f(x,y)≦g(x,y),则∫∫f(x,y)dσ≦∫∫g(x,y)dσ   推论 ∣∫∫f(x,y)dσ∣≦∫∫∣f(x,y)∣dσ   性质4 设M和m分别是函数f(x,y)在有界闭区间D上的最大值和最小值,σ为区域D的面积,   则mσ≦∫∫f(x,y)dσ≦Mσ   性质5 如果在有界闭区域D上f(x,y)=1, σ为D的面积,则σ=∫∫dσ   性质6 二重积分中值定理    设函数f(x,y)在有界闭区间D上连续,σ为区域的面积,则在D上至少存在一点(ξ,η),使得   ∫∫f(x,y)dσ=f(ξ,η)●σ
采纳率:58%
为您推荐:
其他类似问题
二重积分的相关知识
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。勤奋治学 深度思考 静心钻研 先苦后甜
高等数学:第九章 重积分(1)二重积分的概念、计算法和应用
二重积分的概念与性质
一、二重积分的概念
1、曲顶柱体的体积
设有一空间立体,它的底是面上的有界区域,它的侧面是以的边界曲线为准线,而母线平行于轴的柱面,它的顶是曲面。
当时,在上连续且,以后称这种立体为曲顶柱体。
曲顶柱体的体积可以这样来计算:
(1)、用任意一组曲线网将区域分成个小区域
,以这些小区域的边界曲线为准线,作母线平行于轴的柱面,这些柱面将原来的曲顶柱体分划成个小曲顶柱体 。
(假设所对应的小曲顶柱体为,这里既代表第个小区域,又表示它的面积值,既代表第个小曲顶柱体,又代表它的体积值。)
(将化整为零)
(2)、由于连续,对于同一个小区域来说,函数值的变化不大。因此,可以将小曲顶柱体近似地看作小平顶柱体,于是
(以不变之高代替变高, 求的近似值)
(3)、整个曲顶柱体的体积近似值为
(积零为整, 得曲顶柱体体积之近似值)
(4)、为得到的精值,只需让这个小区域越来越小,即让每个小区域向某点收缩。为此,我们引入区域直径的概念:
一个闭区域的直径是指区域上任意两点距离的最大者。
所谓让区域向一点收缩性地变小,意指让区域的直径趋向于零。
设个小区域直径中的最大者为, 则
(取极限让近似值向精确值转化)
2、平面薄片的质量
设有一平面薄片占有
面上的区域, 它在处的面密度为,这里,而且在上连续,现计算该平面薄片的质量。
将分成个小区域 用记的直径,既代表第个小区域又代表它的面积。
当很小时, 由于连续, 每小片区域的质量可近似地看作是均匀的, 那么第小块区域的近似质量可取为
两种实际意义完全不同的问题, 最终都归结同一形式的极限问题。因此,有必要撇开这类极限问题的实际背景, 给出一个更广泛、更抽象的数学概念___ 二重积分。
3、二重积分的定义
设是闭区域上的有界函数, 将区域分成个小区域
其中:既表示第个小区域, 也表示它的面积,表示它的直径。
存在,则称此极限值为函数在区域上的二重积分,记作 。
其中: 称之为被积函数,
称之为被积表达式,
称之为面积元素,
称之为积分变量,
称之为积分区域,
称之为积分和式。
4、几个事实
(1)、二重积分的存在定理
若在闭区域上连续, 则在上的二重积分存在。
声明:在以后的讨论中,我们总假定在闭区域上的二重积分存在。
(2)、中的面积元素象征着积分和式中的。
由于二重积分的定义中对区域的划分是任意的,若用一组平行于坐标轴的直线来划分区域,那么除了靠近边界曲线的一些小区域之外,绝大多数的小区域都是矩形,因此,可以将记作(并称为直角坐标系下的面积元素),二重积分也可表示成为 。
(3)、若,二重积分表示以为曲顶,以为底的曲顶柱体的体积。
二、二重积分的性质
二重积分与定积分有相类似的性质
1、【线性性】
其中:是常数。
2、【对区域的可加性】
若区域分为两个部分区域,则
3、若在上,,为区域的面积,则
几何意义: 高为的平顶柱体的体积在数值上等于柱体的底面积。
4、若在上,,则有不等式
特别地,由于,有
5、【估值不等式】
设与分别是在闭区域上最大值和最小值,是的面积,则
6、【二重积分的中值定理】
设函数在闭区域上连续,是的面积,则在上至少存在一点,使得
【例1】用二重积分的定义计算下述二重积分,并利用二重积分的几何意义验证你的计算结果。
解:在上连续,故二重积分存在。用平行于轴或轴的直线
将剖分成个小矩形区域,
每个小区域的面积为 ,
在小区域上选取点为格点,
作积分和式
小区域的直径均为
该曲顶柱体的图形为
据二重积分的几何意义,该抛物柱面的体积为
【例2】估计二重积分
的值,是圆域。
解: 求被积函数在区域上可能的最值
是驻点,且 ;
二重积分的计算法
利用二重积分的定义来计算二重积分显然是不实际的,二重积分的计算是通过两个定积分的计算(即二次积分)来实现的。
一、利用直角坐标计算二重积分
我们用几何观点来讨论二重积分的计算问题。
讨论中,我们假定 ;
假定积分区域可用不等式 表示,
其中, 在上连续。
据二重积分的几何意义可知,的值等于以为底,以曲面为顶的曲顶柱体的体积。
在区间上任意取定一个点,作平行于面的平面,这平面截曲顶柱体所得截面是一个以区间为底,曲线为曲边的曲边梯形,其面积为
一般地,过区间上任一点且平行于面的平面截曲顶柱体所得截面的面积为
利用计算平行截面面积为已知的立体之体积的方法,该曲顶柱体的体积为
上述积分叫做先对Y,后对X的二次积分,即先把看作常数,只看作的函数,对计算从到的定积分,然后把所得的结果( 它是的函数 )再对从到计算定积分。
这个先对, 后对的二次积分也常记作
在上述讨论中,假定了,利用二重积分的几何意义,导出了二重积分的计算公式(1)。但实际上,公式(1)并不受此条件限制,对一般的 (在上连续),公式(1)总是成立的。
类似地,如果积分区域可以用下述不等式
表示,且函数,在上连续,在上连续,则
显然,(2)式是先对,后对的二次积分。
二重积分化二次积分时应注意的问题
1、积分区域的形状
前面所画的两类积分区域的形状具有一个共同点:
对于I型(或II型)区域, 用平行于轴(轴 )的直线穿过区域内部,直线与区域的边界相交不多于两点。
如果积分区域不满足这一条件时,可对区域进行剖分,化归为I型(或II型)区域的并集。
2、积分限的确定
二重积分化二次积分, 确定两个定积分的限是关键。这里,我们介绍配置二次积分限的方法 -- 几何法。
画出积分区域的图形(假设的图形如下 )
在上任取一点,过作平行于轴的直线,该直线穿过区域,与区域的边界有两个交点与,这里的、就是将,看作常数而对积分时的下限和上限;又因是在区间上任意取的,所以再将看作变量而对积分时,积分的下限为、上限为。
【例1】计算,其中是由轴,轴和抛物线在第一象限内所围成的区域。
【例2】计算, 其中是由抛物线及直线所围成的区域。
【例3】求由曲面及所围成的立体的体积。
解: 1、作出该立体的简图, 并确定它在面上的投影区域
消去变量得一垂直于面的柱面 ,立体镶嵌在其中,立体在面的投影区域就是该柱面在面上所围成的区域
2、列出体积计算的表达式
3、配置积分限, 化二重积分为二次积分并作定积分计算
由,的对称性有
所求立体的体积为
二、利用极坐标计算二重积分
1、变换公式
按照二重积分的定义有
现研究这一和式极限在极坐标中的形式。
用以极点为中心的一族同心圆 以及从极点出发的一族射线 ,将剖分成个小闭区域。
除了包含边界点的一些小闭区域外,小闭区域的面积可如下计算
其中,表示相邻两圆弧半径的平均值。
(数学上可以证明: 包含边界点的那些小闭区域所对应项之和的极限为零, 因此, 这样的一些小区域可以略去不计)
在小区域上取点,设该点直角坐标为,据直角坐标与极坐标的关系有
由于也常记作, 因此,上述变换公式也可以写成更富有启发性的形式
(1)式称之为二重积分由直角坐标变量变换成极坐标变量的变换公式,其中,就是极坐标中的面积元素。
(1)式的记忆方法:
2、极坐标下的二重积分计算法
极坐标系中的二重积分, 同样可以化归为二次积分来计算。
【情形一】积分区域可表示成下述形式
其中函数, 在上连续。
【情形二】积分区域为下述形式
显然,这只是情形一的特殊形式 ( 即极点在积分区域的边界上 )。
【情形三】积分区域为下述形式
显然,这类区域又是情形二的一种变形( 极点包围在积分区域的内部 ),可剖分成与,而
由上面的讨论不难发现, 将二重积分化为极坐标形式进行计算, 其关键之处在于: 将积分区域用极坐标变量表示成如下形式
下面通过例子来介绍如何将区域用极坐标变量来表示。
【例4】将下列区域用极坐标变量表示
?先画出区域的简图, 据图确定极角的最大变化范围;
?再过内任一点作射线穿过区域,与区域的边界有两交点,将它们用极坐标表示,这样就得到了极径的变化范围。
注: 本题不能利用直角坐标下二重积分计算法来求其精确值。
利用此题结果可求出著名概率积分 。
而被积函数满足 ,从而以下不等式
成立,再利用例二的结果有
于是不等式可改写成下述形式
3、使用极坐标变换计算二重积分的原则
(1)、积分区域的边界曲线易于用极坐标方程表示( 含圆弧,直线段 );
(2)、被积函数表示式用极坐标变量表示较简单( 含, 为实数 )。
【例6】计算
解 此积分区域为
区域的简图为
该区域在极坐标下的表示形式为
二重积分的应用
定积分应用的元素法也可推广到二重积分,使用该方法需满足以下条件:
1、所要计算的某个量对于闭区域具有可加性(即:当闭区域分成许多小闭区域时, 所求量相应地分成许多部分量,且)。
2、在内任取一个直径充分小的小闭区域时, 相应的部分量可近似地表示为 , 其中, 称为所求量的元素, 并记作。
(注: 的选择标准为: 是直径趋于零时较更高阶的无穷小量)
3、所求量可表示成积分形式
一、曲面的面积
设曲面由方程给出,为曲面在面上的投影区域,函数在上具有连续偏导数和,现计算曲面的面积。
在闭区域上任取一直径很小的闭区域(它的面积也记作),在内取一点,对应着曲面上一点,曲面在点处的切平面设为。
以小区域的边界为准线作母线平行于轴的柱面, 该柱面在曲面上截下一小片曲面,在切平面上截下一小片平面,由于的直径很小,那一小片平面面积近似地等于那一小片曲面面积。
曲面在点处的法线向量( 指向朝上的那个 )为
它与轴正向所成夹角的方向余弦为
这就是曲面的面积元素, 故
【例1】求球面含在柱面 () 内部的面积。
解:所求曲面在面的投影区域
曲面方程应取为
曲面在面上的投影区域为
据曲面的对称性,有
若曲面的方程为或,可分别将曲面投影到面或面,设所得到的投影区域分别为或,类似地有
二、平面薄片的重心
1、平面上的质点系的重心
其质点系的重心坐标为
2、平面薄片的重心
设有一平面薄片,占有面上的闭区域,在点处的面密度为,假定在上连续,如何确定该薄片的重心坐标。
这就是力矩元素,于是
又平面薄片的总质量
从而,薄片的重心坐标为
特别地,如果薄片是均匀的,即面密度为常量,则
十分显然, 这时薄片的重心完全由闭区域的形状所决定, 因此, 习惯上将均匀薄片的重心称之为该平面薄片所占平面图形的形心。
【例2】设薄片所占的闭区域为介于两个圆,
()之间的闭区域,且面密度均匀,求此均匀薄片的重心(形心)。
解: 由的对称性可知:
三、平面薄片的转动惯量
1、平面质点系对坐标轴的转动惯量
设平面上有个质点, 它们分别位于点处, 质量分别为。
设质点系对于轴以及对于轴的转动惯量依次为
2、平面薄片对于坐标轴的转动惯量
设有一薄片,占有面上的闭区域,在点处的面密度为, 假定在上连续。
现要求该薄片对于轴、轴的转动惯量,。
与平面薄片对坐标轴的力矩相类似,转动惯量元素为
【例3】求由抛物线及直线所围成的均匀薄片(面密度为常数 )对于直线的转动惯量。
解: 转动惯量元素为
四、平面薄片对质点的引力
设有一平面薄片,占有面上的闭区域,在点
处的面密度为,假定在上连续,现计算该薄片对位于轴上点处的单位质量质点的引力。
于是,薄片对质点的引力在三个坐标轴上的分力的力元素为
from: http://sxyd.sdut.edu.cn/gaoshu2/
没有更多推荐了,二重积分的概念与性质_百度文库
您的浏览器Javascript被禁用,需开启后体验完整功能,
享专业文档下载特权
&赠共享文档下载特权
&10W篇文档免费专享
&每天抽奖多种福利
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
二重积分的概念与性质
你可能喜欢}

我要回帖

更多关于 二重积分的经典例题ppt 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信