最能师德体现在哪些方面电池性能的是哪个方面的数据

登录以解锁更多InfoQ新功能
获取更新并接收通知
给您喜爱的内容点赞
关注您喜爱的编辑与同行
966,690 三月 独立访问用户
语言 & 开发
架构 & 设计
文化 & 方法
您目前处于:
作为大数据工程师,你必须熟练运用的性能优化技术
作为大数据工程师,你必须熟练运用的性能优化技术
0&他的粉丝
日. 估计阅读时间:
,PWA、Web框架、Node等最新最热的大前端话题邀你一起共同探讨。
亲爱的读者:我们最近添加了一些个人消息定制功能,您只需选择感兴趣的技术主题,即可获取重要资讯的。
相关厂商内容
相关赞助商
图1. Windows7性能指数
关于硬件性能本身,个人觉得最好对性能的诠释就像图1大家比较熟悉的Windows7操作系统性能指数所展示的一样,性能本身并在于其所长,而是在于其所短,就像图1里面那个5.4分主硬盘托了整体的后腿一样,只要有短板存在,其他地方再强也可能收效甚微,所以需要硬件的性能检测就是找出短板在那里,并且尽可能地找到应对的方法。
在硬件观测角度方面,主要通过以下四个维度来判断到底哪里是瓶颈,它们分别是CPU、内存、硬盘还有网络。&
首先,在讲检测CPU性能之前,我们可以通过这个&cat /proc/cpuinfo |grep &processor&|wc -l&命令来获取本机的核数(如果开了超线程,一个核可以被看作两个核),这样可以知道CPU利用率的上限是多少。
最常用CPU监测工具是TOP,当然TOP输出是一个瞬间值,如果想获取精确的数据,需要持续关注一段时间。
图2 TOP示例
TOP的使用主要看两个值,其一是总体使用值,其最大值是100%,就是图2第三行Cpu(s),前面两个0.2%分别是用户态和内核态的利用率,而99.7%是CPU空闲率,从这个可以看出,本机的CPU部分基本是空闲的;其二可以看相关进程,看它的&%CPU&使用率,比如,Xorg这个GUI进程的占用率是0.3%,但是这里面的100%不是本机所有CPU的100%,而是单个核的100%。所以它的上限会是本机核数*100%。
图3 uptime示例
因为TOP主要关注的是瞬时的值,如果要看一段时间的均值,这个时候可以用uptime这个命令,见图3,它除了可以显示当前总运行时,当前在线用户,更重要的是可以显示1分钟、5分钟、15分钟的整机CPU的平均负载情况。
假设在平时监测的时候,如果经常碰到用满80%以上CPU资源的话,可以理解为CPU利用率高,在这种场景下大多数只能靠优化执行逻辑,才能提升效率。
内存的监测
图4 free -m的示例
关于内存的监测,常用的命令是free -m,通过这个命令可以查看系统内存的具体使用情况。其中total,used和free都很好理解,通过这三列可以看出此时系统总内存,已经使用内存和没有被使用的内存,而cached这列则表示有多少内存已经被Page Cache占用,但当系统内存吃紧的时候,Page Cache会立即被回收并分配给请求内存的应用程序,所以Page Cache也可以被视为处于free状态的内存。
还有下面的Swap分区,如果used数值比较高,说明内存非常紧张,系统已经动用交换区,同时IO开销也会增长非常明显。当发现内存不够用的情况,可以考虑重启或者关闭那些占用很多内存的进程。
在这里稍微扩展一下Page Cache这个内存机制,因为这个机制对大数据挺重要的。一般在Linux系统上,利用默认系统I/O接口写入的文件块,会先在Page Cache上面有一个缓存,之后再写入到I/O设备上面,那么假设系统内存没有被占有满的话,在这种情况下,这个缓存会长时间保留,并不会被洗出内存,这样等下次程序访问到这些文件块的时候,肯定会访问Page Cache上面的那个版本,也就是直接访问内存,所以性能方面是内存级别的。
I/O性能的监测
图5 iostat &xz 1示例
关于I/O性能,可以通过iostat这个命令来观察I/O的性能,具体见图5(sda是主硬盘),虽然参数比较多,但可以主要关注这两个参数:
其一是await,它代表了IO操作的平均等待时间,单位是毫秒,这也是应用和磁盘之间操作所要消耗的时间,包括等待和实际的操作,如果这个数值大,说明I/O资源非常忙或者有故障;
其二是%util,也就是设备利用率,数值如果超过60,所以利用率很高,并会影响I/O平均等待时间,如果到100,那就说明设备已饱和了,只能添加更多I/O资源。
网络方面的监测
图6 sar &n DEV 1示例
在网络方面,使用的比较多的sar(System Activity Reporter)命令,如图6。这个命令可以查看网络设备的吞吐率,并在这个基础上,将吞吐量和硬件上限做对比,来判断网络设备是否已经饱和,假设以单张千兆网卡为例,如果&rxkB/s&和&txkB/s&两种相加超过100MB的话,说明网络已经接近饱和了。还有除了这个通过命令行来获取网络数据之外,还可以通过开源的nload的工具来进行监测,具体见下图:
图7:nload示例
图8 vmstat 1示例
其实除了上面这些工具外,还有一个vmstat这个全能的命令,能监控硬件的方方面面,比如,如图8所示,Procs的&r&列,这个列显示正在等待CPU资源的进程数,这个数据比之前看的top和uptime更加能够体现CPU负载情况,并且这个数据不包含等待IO的进程。如果这个数值大于机器CPU核数,那么机器的CPU资源已经饱和。
Memory部分的&free&,&buff&和&cache&列的作用和上面free作用类似,而&si&和&so&说明使用Swap的次数,如果这个数据不为0,说明Swap交换区已经在使用,也意味着物理内存已经不足。
Cpu部分也大体和TOP上面显示类似,但可以关注&wa&这列,其代表的是IO等待时间,如果数值大于0的话,可以判断I/O资源有争抢。
如果通过上面硬件方面的监测,发现了瓶颈,或者发现了有很多余量,可以通过下半部分的软件方面的优化来进行调整,如果软件方面也无能为力的话,那么只能通过购买和安装更多的硬件。
软件方面的优化
这个方面因为各个大数据产品的实现方式不同,并且需要优化点也不同,操作方式更是不同,所以在这里,主要提供一些方针供大家参考。
因为常见大数据产品的写入和传统关系型数据库是不同,传统关系数据库的写入是一行一行的写入,而常见大数据产品的写入是批量的写入,并且每次批量写入之后,都会生成新的数据文件,并且这个数据文件是不会被修改的。所以导入数据粒度小的话会导致很多细小文件产生,这样会导致更多的I/O操作,所以在使用大数据产品的时候,导入数据规模是越大越好,常见的规模在100MB以上为佳。
尽可能地并行
假设通过前面的硬件方面的测试方面,发现无论是CPU,内存,I/O还是网络,都没有遇到瓶颈,并且至少有20%潜力可挖,这个时候可以考虑尽可能地通过并行来提升性能,主要有两个方式:其一是每台机器上面部署更多的进程来压榨硬件资源;其二是提升单个进程的多线程数,这种方式比第一种更简单,风险也更低。总体而言,尽量使每台机器所使用到的线程数可以达到系统自身线程数的80%。
尽可能使用压缩和列存
对于一些新入门的工程师,也包括那些有很多传统关系数据库使用经验的专业DBA数据管理员而言,大家都对列存比较一知半解,从而不敢使用。
列存和传统行存相比,主要有两个比较大的区别:
其一是数据不是按照行来存储,而且是将很多行的数据按列归属在一起,并存储 ,具体可以看图9;
其二是一般行存的写入是一行行,而且列存是比较批量的,所以写入的数据库块会比较大,一般大于行存常见的8KB。基于我个人这几年的经验,列存在极大多数分析场景下,都能提升3倍以上的性能,除了那些需要遍历一个表半数以上列的场景。因为通过列存不仅能够通过避免那些不要列的导入,这样能减少硬盘的I/O总量。并且由于列存本身数据是一个大块一个大块的存在,所以是硬盘I/O读取操作的次数也会减伤,这个对于硬盘I/O非常有利,因为本身硬盘I/O单次随机读取操作的成本非常高,和SSD相比。但是批量连续成本却非常优秀,当然如果使用SSD的话,性能会更优。
在这个基础上,由于连续数据都归属于一列都比较类似,比如,性别,所以对其压缩的效果非常不错,一般在1比5左右,并且通过压缩节省的I/O远大于压缩和解压缩所带来CPU的损耗。这也导致就算所有数据全都在硬盘上,其性能的损失和所有数据在内存上面缓存相比,一般慢4到5倍左右,其他也不会特别亏。
图9 列存和行存的对比
善加利用Page Cache
在上半部分已经提到了, 利用好Page Cache可以达到最基础级别的内存计算的效果,当然和真正意义上的内存计算还是很大的距离。在性能测试的时候,这个优化是比较常见的。一般作法是,先通过命令& echo 3 & /proc/sys/vm/drop_caches&来清空page cache,之后跑一下比较简单,但又能加载所有相关数据的语句,比如,对每一列进行求总,这种做法的坏处是没有机会应对真实可能存在性能瓶颈,这对今后的实际运行会产生很多不可控的因素,因为真实业务场景肯定会比所预想到的场景更复杂。
利用好分区特性
众所周知,最快SQL就是什么都不做的SQL,比如,&select 1&;当然在实际的操作过程中,肯定不会有类似&select 1&这样没有意义的操作。所以对于传统关系数据库而言,为了减少读取不必要的数据,一般会使用索引。但是对于大数据这样分析操作而言,索引这种机制太昂贵,而且收效甚微。
分析大数据应用常用的过滤数据的方式是分区,特别是按照时间来分区,因为一般时间是最合适分割大数据的维度,比如,数据按照月分区,这样如果查询只需要涉及到某月数据,那么其余十一个月数据可以立刻忽略,当然如果按日来分区的,效果可能会更好,但尽量避免因为粒度太小,导致写入文件过于碎片化的情况。
Join的优化
对于大数据的分析应用而言,Join操作是非常常见的,并且Join操作本身对硬件的短板也更敏感,特别是网络,因为大多数的分布式操作,每个数据节点可以独立地完成,但 Join经常需要来自其他节点数据才能完成本节点的执行,并且这个量可能很大,有的时候,一个节点执行所需要的数据远超本节点自带的数据,类似场景还有unique这样的去重操作,所以在调优方面消耗的功夫也最多。
常见Join方式,主要有三种:
其一是Broadcast广播,常用于大小表之间的Join,Join发起方会将小表的相关数据完整地分发到每个数据节点,之后当每个数据节点收到小表之后,会找其本地的大表数据来完成Join的,如图10,pages是小表,visits是大表,发起方将Pages这张小表分发到每个数据节点;
其二是对小表Local化,这个机制本质上非常类似Broadcast,只是分发小表这个操作是做导入数据的时候自动完成,性能肯定比Broadcast更好,因为减少传输小表的网络消耗和等待时间,但是需要在创建表的时候,做一些额外的设置,这个机制在MPP数据是非常常见的,但是在Hadoop平台上面还是比较少见,因为其底层的HDFS分布式文件系统比较强调硬件无关,地址透明,这个和数据尽可能Local化的思路是违背的;
其三是Shuffle或者Partitioned Join机制,其常用于两张大表之间的Join。因为将大表都分发给每个节点肯定成本太高了,而且数据节点的内存不一定能放的下这么多数据,所以通过Shuffle洗牌机制,也就是将所有参与的Join表的相关部分按照某种机制均匀分发到各个节点,并且每个节点数据都是独立的,如图11所示,pages和visits都是大表,它们按照Join列Hash的值来进行再次分布,节点1有Join列为A-E的数据,之后依次类推,虽然成本很高,但是对于大表之间的Join是最合理和最可行的方法。
图10 Broadcast Join
图11 Shuffle Join
介绍完Join机制之后,再深入一下Join的优化,也主要有三个方面:
其一是在大表和小表摆放顺序要符合技术规范,这样能避免优化器将大表作为Broadcast表来进行分发;
其二是开启或者执行预统计,也就是在查询之前,开启表的预统计,虽然预统计会耗费一点时间,但这样能够让优化器知道表的具体情况,从而做出合理的方案,即使之前表的顺序写错了,还有由于预统计会遍历数据,这样可以将数据预先加载到Page Cache上面;
其三是选择合理的Join机制,也就是做好Broadcast和Shuffle之间的抉择,两个大表之间选择Shuffle,如果不是选择Broadcast,当然假如优化器能判断出是更好不过了,但当优化器出现问题的时候,可以通过人工输入一些提示符来帮助优化器来判断;
多看Profile
介绍很多优化技术,但是这样技术都比较笼统,为了更好做优化,做某个产品优化,还是最好能多看看每次执行后的Profile,这样能对产品更深的理解。
因为大数据产品和技术比较多,并且每个产品和特色和设计都不同,所以在细节方面没有特别深入,但是的确有非常多的共性,所以通过硬件的监测,以及软件方面的优化,应该能把常见的大数据产品发挥到八成的功力。
吴朱华:国内资深云计算和大数据专家,在IBM中国研究院和上海云人信息科技有限公司参与过多款云计算产和大数据产品的开发工作,同济本科,并曾在北京大学读过硕士。2011年中,发表业界最好的两本云计算书之一《云计算核心技术剖析》。2016年和上海华东理工大学的阮彤教授等合著了《大数据技术前沿》一书。
感谢对本文的审校。
给InfoQ中文站投稿或者参与内容翻译工作,请邮件至。也欢迎大家通过新浪微博(,),微信(微信号:)关注我们。
Author Contacted
语言 & 开发
362 他的粉丝
架构 & 设计
846 他的粉丝
118 他的粉丝
1 他的粉丝
Performance
1 他的粉丝
2 他的粉丝
1 他的粉丝
告诉我们您的想法
允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p
当有人回复此评论时请E-mail通知我
允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p
当有人回复此评论时请E-mail通知我
允许的HTML标签: a,b,br,blockquote,i,li,pre,u,ul,p
当有人回复此评论时请E-mail通知我
赞助商链接
InfoQ每周精要
订阅InfoQ每周精要,加入拥有25万多名资深开发者的庞大技术社区。
架构 & 设计
文化 & 方法
InfoQ.com及所有内容,版权所有 ©
C4Media Inc. InfoQ.com 服务器由 提供, 我们最信赖的ISP伙伴。
极客邦控股(北京)有限公司
找回密码....
InfoQ账号使用的E-mail
关注你最喜爱的话题和作者
快速浏览网站内你所感兴趣话题的精选内容。
内容自由定制
选择想要阅读的主题和喜爱的作者定制自己的新闻源。
设置通知机制以获取内容更新对您而言是否重要
注意:如果要修改您的邮箱,我们将会发送确认邮件到您原来的邮箱。
使用现有的公司名称
修改公司名称为:
公司性质:
使用现有的公司性质
修改公司性质为:
使用现有的公司规模
修改公司规模为:
使用现在的国家
使用现在的省份
Subscribe to our newsletter?
Subscribe to our industry email notices?
我们发现您在使用ad blocker。
我们理解您使用ad blocker的初衷,但为了保证InfoQ能够继续以免费方式为您服务,我们需要您的支持。InfoQ绝不会在未经您许可的情况下将您的数据提供给第三方。我们仅将其用于向读者发送相关广告内容。请您将InfoQ添加至白名单,感谢您的理解与支持。用数据说话:四种常用二次电池性能对比 锂电池最优
  可充电在我们生活中扮演着重要的角色。若是电耗光后无法进行再次充电,我们的日常生活真是无法想象。于电池,人们的关注点集中在它的比能量、使用寿命、负载特性、安全性、价格、自放电、环境问题、维修要求以及废后处理等。
  铅酸电池---最早期的可充电电池体系之一。若不考虑在生活中的滥用和价格上的经济性,它是很耐用的一类电池,但其比能量低和循环寿命有限。铅酸电池广泛用在轮椅、高尔夫球车、装甲车、应急照明以及不间断能源供应上。
  镍镉电池---技术发展成熟,也被人们所熟知,一般用在对长使用寿命、大放电电流、极端温度和价格等要求较高的方面。因为环境污染问题,镍镉电池正被其他类化学电池逐渐取代。多用于电动工具、对讲机、飞机以及不间断电源供应设施等。
  镍氢电池---镍镉电池的切实取代者,比能量更高、所含有毒金属更少,用于医疗设备、混合动力汽车和工业应用上,同样也用在一般消费者所使用的AA和AAA电池上。
  锂离子电池---最有前景的电池体系,用于便携式消费产品和电动动力传动型车辆,比镍基电池和铅酸电池都要昂贵,并且需要保护电路来确保安全。锂离子电池又分三种主要的电池类型,以其阴极氧化物来命名,即钴酸盐、锰酸盐和磷酸盐。这三大锂离子电池体系的特点如下:
  钴酸锂盐或锂钴化物(LiCoO2):比能量高、负载能力中等以及使用寿命有限,其应用包括手机、笔记本电脑、数码相机和可穿戴式产品。
  锰酸锂盐或锂锰化物(LiMn2O4):可实现大的充放电电流,但比能量低使用寿命有限,可用在电动工具、医疗设备和电力动力传动型设施上。
  磷酸锂盐或锂磷化物(LiFePO4):与锂锰化物类似,电池单芯的额定电压为3.3V,循环寿命长,安全性高,但自放电率比其他锂离子体系要高。
  其他类锂离子基电池还有很多,它们中的一些材料人网会进一步介绍(包括这次没有讲到但同样流行的锂离子聚合物电池或锂聚合物电池)。通常锂离子体系的电池以它们各自的阴极材料而命名,锂聚合物电池则不同,它以其独特的架构而命名。在这一点上,可充电锂金属电池也一样,要想控制锂枝晶(会危及电池的安全使用)的生长,锂金属电池还需要进一步的发展,这个问题一旦解决,锂金属电池就会一举成为有着极高比能量和良好比功率的电池,也是新一代储能电池的理想选择。
表1:四种常用二次电池的性能对比 
  注:以上数据来自近几年发表的文章,只引用了在平均性能范围内的文章,没有引用超出平均性能范围的文章。
  (1)电池组的阻抗会受到电池容量、电路及电池数量的影响。锂离子电池的保护电路会增加约100m&O的阻抗。
  (2)该数据基于18650型号的电池。阻抗取决于电池的尺寸及设计方案。
  (3)在维护良好的条件下得到该循环寿命的数据。
  (4)循环寿命取决于放电深度,浅放电深度会增加循环寿命。
  (5)自放电在刚充完电后是最严重的。镍铬电池在充完电24小时后会损失10%的电量,接着每30天损失10%的电量。温度越高,自放电越严重。
  (6)保护电路每月会消耗3%的电量。
  (7)真实电压应是1.25V,但1.2V用的更多。
  (8)低阻抗能减少欠载状态下的电压损失,且锂电池的额定电压往往高于3.6V。额定电压为3.7V或3.8V的电池也可以在3.6V条件下工作。
  (9)过载能力;过载后需要时间进行复原。
  (10)不要经常在零度以下充电。详见日后某篇专题:锂电池高低温充电分析。
  (11)将其充满电,防止硫化反应。
  (12)对大多数锂离子电池而言,充电截止电压为4.30V,放电截止电压为2.20V;对正极材料为磷酸铁锂的锂离子电池而言,其截止电压并不恒定,需单独进行设定。
(责任编辑:admin)
免责声明:本文仅代表作者个人观点,与中国电池联盟无关。其原创性以及文中陈述文字和内容未经本网证实,对本文以及其中全部或者部分内容、文字的真实性、完整性、及时性本站不作任何保证或承诺,请读者仅作参考,并请自行核实相关内容。
凡本网注明 “来源:XXX(非中国电池联盟)”的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责。
如因作品内容、版权和其它问题需要同本网联系的,请在一周内进行,以便我们及时处理。
联系人:王女士
Email:cbcu#cbcu.com.cn
发送邮件时用@替换#
电话:010-
微信公众号查看: 3876|回复: 17
[转]镍氢、镍镉电池的相关内容
签到天数: 472 天[LV.9]以坛为家II
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
才可以下载或查看,没有帐号?
今天找镍镉电池的资料时发现一个老贴不错,简单搜索了一下论坛没搜相同标题的,所以转过来大家看看!!
镍氢、镍镉电池
一、二次电池性能主要包括哪些方面
主要包括电压、内阻、容量、内压、自放电率、循环寿命、密封性能、安全性能、储存性能、外观等,其它还有过充、过放、可焊性、耐腐蚀性等。
二、充电池与碱性电池的比较:
在大部分情况下,镍氢电池均可以完全取代一次性电池,当中尤其是用于高耗电器材的时候。
虽然碱性电池的额定电压为1.5伏特,但会于开始放电后电压会不断下降。综观整个放电过程,碱性电池的平均电压约为1.2伏特,与镍氢电池非常接近,主要差别在于碱性电池的电压于开始放电时为1.5伏特,最终下降至不足1.0伏特,而镍氢电池则会于大部分时间保持约1.2伏特的电压。
三、电池的可靠性测试项目有哪些
1.循环寿命
2.不同倍率放电特性
3.不同温度放电特性
4.充电特性
5.自放电特性
6.不同温度自放电特性
7.存贮特性
8.过放电特性
9.不同温度内阻特性
10.高温测试
11.温度循环测试
12.跌落测试
13.振动测试
14.容量分布测试
15.内阻分布测试
16.静态放电测试
四、电池的安全性测试项目有哪些
1.内部短路测试
2.持续充电测试
4.大电流充电
5.强迫放电
6.跌落测试
7.从高处跌落测试
8.穿刺实验
9.平面压碎实验
10.切割实验
11.低气压内搁置测试
12.热虐实验
13.浸水实验
14.灼烧实验
15.高压实验
16.烘烤实验
17.电子炉实验
五、什么是电池的额定容量
指在一定放电条件下,电池放电至截止电压时放出的电量.IEC标准规定镍镉和镍氢电池在20±5℃环境下,以0.1C充电16小时后以0.2C放电至1.0V时所放出的电量为电池的额定容量,以C5表示.而对于锂离子电池,则规定在常温、恒流(1C)、恒压(4.2V)控制的充电条件下,充电3h,再以0.2C放电至2.75V时,所放出的电量为其额定容量,电池容量的单位有Ah,mAh(1Ah=1000mAh).
帖子永久地址:&<button type="submit" class="pn" onclick="setCopy('[转]镍氢、镍镉电池的相关内容\nhttp://www.shoudian.org/thread--1.html', '帖子地址已经复制到剪贴板您可以用快捷键 Ctrl + V 粘贴到 QQ、MSN 里。')">推荐给好友
享有帖子相关版权3、其他单位或个人使用、转载或引用本文时必须同时征得该帖子作者和的同意4、帖子作者须承担一切因本文发表而直接或间接导致的民事或刑事法律责任5、本帖部分内容转载自其它媒体,但并不代表本站赞同其观点和对其真实性负责6、如本帖侵犯到任何版权问题,请立即告知本站,本站将及时予与删除并致以最深的歉意7、管理员和版主有权不事先通知发贴者而删除本文', this.href);">论坛版权
签到天数: 472 天[LV.9]以坛为家II
六、什么是电池的放电残余容量
当对可充电电池用大电流(如1C或以上)放电时,由于电流过大使内部扩散速率存在的“瓶颈效应”,致使电池在容量未能完全放出时已到达终点电压,再用小电流如0.2C还能继续放电,直至1.0V/支时所放出的容量称为残余容量.
七、什么是电池的标称电压、开路电压、中点电压、终止电压
电池的标称电压指的是在正常工作过程中表现出来的电压,二次镍镉镍氢电池标称电压为1.2V;二次锂电池标称电压为3.6V;
开路电压指在外电路断开时,电池两个极端间的电位差;
终点电压指电池放电实验中,规定的结束放电的截止电压;
中点电压指放电到50%容量时电池的电压,主要用来衡量大电流放电系列电池高倍率放电能力,是电池的一个重要指标.
八、电池常见的充电方式有哪几种
镍镉和镍氢电池的充电方式:
1.恒流充电:整个充电过程中充电电流为一定值,这种方法最常见;
2.恒压充电:充电过程中充电电源两端电压保持一恒定值,电路中的电流随电池电压升高而逐渐减小.
3.恒流恒压充电:电池首先以恒流充电,当电池电压升高至一定值时,电压保持不变,电路中电流降至很小,最终趋于0.
锂电池的充电方式:
恒流恒压充电:电池首先以恒流充电,当电池电压升高至一定值时,电压保持不变,电路中电流降至很小,最终趋于0.
九、什么是电池的标准充放电
IEC国际标准规定的镍镉和镍氢电池的标准充放电方法为:
首先将电池以0.2C放电至1.0V/支,然后以0.1C充电16小时,搁置1小时后,以0.2C放至1.0V/支,即为对电池标准充放电。
十、脉冲充电对电池性能有什么影响
由于镍镉电池在常规充电时容易极化,常规恒压或恒流充电均会使电解液持续产生氢气体,其氧气在内部高压作用下,渗透至负极与镉板作用生成CdO,造成极板有效容量下降.脉冲充电一般采用充与放的方法.即充5秒钟,就放1钞钟.这样充电过程产生的氧气在放电脉冲下将大部分被还原成电解液.不仅限制了内部电解液的气化量,而且对那些已经严重极化的旧电池,在使用本充电方法充放电5-10次后,会逐渐恢复或接近原有容量.
签到天数: 472 天[LV.9]以坛为家II
十一、什么是涓流充电
涓流充电是用来弥补电池在充满电后由于自放电而造成的容量损失.一般采用脉冲电流充电来实现上述目的.根据以往测试的经验,电池在充满电后,在40℃环境下由于自放电损失的容量大约是标称容量的5%.从理论上讲,以C/500的电流持续充电即可弥补自放电造成的容量损失C*5/100*24h*C/500,但是,由于电流太小,实际上充电效率非常低,使得基本无法充进电.我们采用脉冲充电方法可以解决这个问题.用C/10充电1.2秒,搁置58.8秒.按照上述条件每天充电的容量约为标称容量的5%.一般而言,脉冲充电的方式在以下范围内较为适合,可根据实际情况选用.充电电流:C/20,充电时间:0.1秒到60秒.
涓流充电的例子:
充电高充电低脉冲周期S每天充电容量电流时间电流时间C/10 1.2s 0C 58.8s 60s标准容量的5% C/20 2.4s 0C 57.6s 60s C/10 0.6s 0C 29.4s 30s
十二、什么是充电效率
指电池在一定放电条件下放至某一截止电压时放出的容量与输入的电池容量的比值,它可按照以下公式计算:
充电效率=(放电电流×放电至截止电压的时间/充电电流×充电时间)×100%
输入的能量部分用来将活性物质转换为充电态,部分消耗在副反应上来产生氧气,充电效率受到充电速率和环境温度的影响,充电时充电电流必须在一定范围内,电流太小或太大充电效率都很低,由于电池还存在自放电,致使电池无法充满电.
十三、什么是电池的功率输出
电池的功率输出指在单位时间里输出能量数的能力,它是根据放电电流I和放电电压V来计算的:
P=U×I 单位:瓦特
电池的内阻越小,输出功率越高;电池的内阻应小于用电器的内阻,否则电池本身消耗的功率还要大于用电器消耗的功率,这是不经济的,而且可能损坏电池,在额定电压条件下电池的输出功率随电极表面积的增大工作温度的上升而上升,反之亦然.
十四、什么是二次电池的自放电,不同类型电池的自放电率是多少
自放电又称荷电保持能力,它是指在开路状态下,电池储存的电量在一定环境条件下的保持能力.一般而言,自放电主要受制造工艺、材料、储存条件的影响.自放电是衡量电池性能的主要参数之一.一般而言,电池储存温度越低,自放电率也越低,但也应注意温度过低或过高均有可能造成电池损坏无法使用,电池充满电开路搁置一段时间后,一定程度的自放电属于正常现象.IEC标准规定镍镉及镍氢电池充满电后,在温度为20±5℃,湿度为65±20%条件下,开路搁置28天,0.2C放电时间分别大于3小时和3小时15分即为达标.
与其它充电电池系统相比,含液体电解液太阳能电池的自放电率明显要低,在25下大约为10%/月
十五、什么是24小时自放电测试
★镍镉和镍氢电池的自放电测试为:
由于标准荷电保持测试时间太长,一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至1.0V.1C充电80分钟,搁置15分钟,以1C放电至10V,测其放电容量C1,再将电池以1C充电80分钟,搁置24小时后测1C容量C2,C2/C1×100%应小于15%
★锂电池的自放电测试为:
一般采用24小时自放电来快速测试其荷电保持能力,将电池以0.2C放电至3.0V,恒流恒压1C充电至4.2V,截止电流:10mA,搁置15分钟后,以1C放电至3.0V测其放电容量C1,再将电池恒流恒压1C充电至4.2V,截止电流100mA,搁置24小时后测1C容量C2,C2/C1×100%应大于99%.
十六、什么是电池的内阻,怎样测量
电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,一般分为交流内阻和直流内阻,由于充电电池内阻很小,测直流内阻时由于电极容易极化,产生极化内阻,故无法测出其真实值;而测其交流内阻可免除极化内阻的影响,得出真实的内值.
交流内阻测试方法为:利用电池等效于一个有源电阻的特点,给电池一个1000HZ,50mA的恒定电流,对其电压采样整流滤波等一系列处理从而精确地测量其阻值.
签到天数: 472 天[LV.9]以坛为家II
十七、充电态内阻与放电态内阻有何不同
充电态内阻指电池100%充满电时的内阻,放电态内阻指电池充分放电后的内阻.
一般来说,放电态内阻不太稳定,且偏大;充电态内阻较小,阻值也较为稳定.在电池的使用过程中,只有充电态内阻具有实际意义,在电池使用的后期,由于电解液的枯竭以及内部化学物质活性的降低,电池内阻会有不同程度的升高.
十八、什么是IEC标准循环寿命测试
★IEC规定镍镉和镍氢电池标准循环寿命测试为:
电池以0.2C放至1.0V/支后
1.以0.1C充电16小时,再以0.2C放电2小时30分(一个循环).
2.0.25C充电3小时10分,以0.25C放电2小时20分(2-48个循环).
3.0.25C充电3小时10分,以0.25C放至1.0V(第49循环)
4.0.1C充电16小时,搁置1小时,0.2C放电至1.0V(第50个循环),对镍氢电池重复1-4共400个循环后,其0.2C放电时间应大于3小时;对镍隔电池重复1-4共500个循环,其0.2C放电时间应大于3小时.
★IEC规定锂电池标准循环寿命测试为:
电池以0.2C放至3.0V/支后,1C恒流恒压充电到4.2V,截止电流20MA,搁置1小时后,再以0.2C放电至3.0V(一个循环)反复循环500次后容量应在初容量的60%以上.
十九、什么是标准耐过充测试
★IEC规定镍镉和镍氢电池的标准耐过充测试为:
将电池以0.2C放电至1.0V/支,以0.1C连续充电28天,电池应无变形,漏液现象,且过充电后其0.2C放电至1.0V的时间应大于5小时.
★IEC规定锂电池的标准耐过充测试为:
⑴将电池0.2C放电至3.0V
⑵用电流I任意设置10V电压对电池充电充电时间为 T=2.5×C5/I
⑶电池最终不爆炸和起火
二十、什么是标准荷电保持测试
★IEC规定镍镉和镍氢电池的标准荷电保持测试为:
电池以0.2C放至1.0/支,后以0.1C充电16小时,在温度为20±5℃,湿度为65±20%条件下储存28天后,再以0.2C放电至1.0V,镍镉电池放电时间应不小于195min,而镍氢电池应大于180min.
★国家标准规定锂电池的标准荷电保持测试为(IEC无相关标准).
电池以0.2C放至3.0/支后,以1C恒流恒压充电到4.2V,截止电流10mA,在温度为20±5℃下储存28天后,再以0.2C放电至2.75V计算放电容量,再与电池标称容量相比,应不小于初始容量的85%.
签到天数: 472 天[LV.9]以坛为家II
二十一、什么是电池的内压,电池正常内压一般为多少
电池的内压是由于充放电过程中产生的气体所形成的压力.主要受电池材料、制造工艺、结构、使用方法等因素影响.一般电池内压均维持在正常水平,在过充或过放情况下,电池内压有可能会升高:
例如过充电正极:4OH--4e 2H2O+O2
产生的氧气透过隔膜纸与负极复合:
2Cd+O2 2CdO
如果负极反应的速度低于正极反应的速度,产生的氧气来不及被消耗掉,就会造成电池内压升高.
二十二、什么是内压测试
★镍镉和镍氢电池内压测试为:
将电池以0.2C放至1.0V后,以1C充电3小时,根据电池钢壳的轻微形变通过转换得到电池的内压情况,测试中电池不应彭底,漏液或爆炸.
★锂电池内压测试为:(UL标准)
模拟电池在海拔高度为15240m的高空(低气压11.6kPa)下,检验电池是否漏液或发鼓.
具体步骤:将电池1C充电恒流恒压充电到4.2V,截止电流10mA,然后将其放在气压为11.6Kpa,温度为(20±3℃)的低压箱中储存6小时,电池不会爆炸,起火,裂口,漏液.
二十三、什么是短路实验
将充满电的电池在防爆箱内用一根导线连接正负极短路,电池不应爆炸或起火
二十四、什么是跌落测试
将电池组充满电后从三个不同方向于1m高处跌落于硬质橡胶板上,每个方向做2次,电池组电性能应正常,外包装无破损.
二十五、什么是振动实验
★镍镉和镍氢电池振动实验方法为:
电池以0.2C放电至1.0V后,0.1C充电16小时,搁置24小时后按下述条件振动:
频率:1000次,分XYZ三个方向各振动30分钟.
振动后电池电压变化应在±0.02V之间,内阻变化在±5m以内
★锂电池振动实验方法为:
电池以0.2C放电至3.0V后1C充电恒流恒压充电到4.2V,截止电流10mA,搁置24小时后按下述条件振动:
使电池在10HZ-55HZ之间振动,每分钟以1HZ的震动速率递增或递减.
振动后电池电压变化应在±0.02V之间,内阻变化在5m以内.
二十六、什么是碰撞实验
★镍镉和镍氢电池碰撞实验方法为:
电池以0.2C放电至1.0V后,在20±5℃下,以0.1C充电16小时,安装到碰撞测试台上按如下条件测试:
峰值加速度为98m/S2(10g),相应脉冲时间D为16m/s,相应速度变化为1.00m/s,碰撞1000次结束后,电池应在20±5℃下搁置1-4小时以0.2C放电至1.0V的放电时间应不小于5小时
★锂电池碰撞实验方法为国家标准
电池以0.2C放电至3.0V后在20±5℃下以1C恒流恒压充电到4.2V,截止电流10mA,安装到碰撞测试台上按如下条件测试:
峰值加速度在100m/S2,脉冲持续时间为16ms,碰撞次数为1000±10,碰撞结束后目测电池外观应无异常现象,然后以1C恒流放电至2.75V,然后在(20±5℃)的条件下,进行1C充放电循环直至放电容量不少于初始容量的85%,但循环次数不多于3次.
签到天数: 472 天[LV.9]以坛为家II
二十七、什么是撞击实验
电池充满电后,将一个15.8mm直径的硬质棒横放于电池上,用一个20磅的重物从610mm的高度掉下来砸在硬质棒上,电池不应爆炸起火或漏液.
二十八、什么是穿刺实验
电池充满电后,用一个直径为2.0mm~25mm的钉子穿过电池的中心,并把钉子留在电池内,电池不应该爆炸起火.
二十九、什么是高温加速实验
由于标准荷电保持测试时间较长,对镍氢电池一般采用高温加速实验.将充满电后的电池储存在45℃环境中3天(等效于电池在常温下搁置28天),在常温下搁置1小时后,以0.2C放电至1.0V,要求放电时间不大于3小时.
三十、什么是高温高湿测试
★镍镉和镍氢电池高温高湿测试为:
电池以0.2C放电至1.0V后,1C充电75分钟后将其置与温度66℃,85%湿度条件下储存192小时(8天),于常温常湿下搁置2小时,电池不应变形或漏液,容量恢复应在标称容量的80%以上.
★锂电池高温高湿测试为:(国家标准)
将电池1C恒流恒压充电到4.2V,截止电流10mA,然后放入(40±2℃),相对湿度为90%-95%的恒温恒湿箱中搁置48h后,将电池取出在(20±5℃)的条件下搁置2h,观测电池外观应该无异常现象,再以1C恒流放电到2.75V,然后在(20±5℃)的条件下,进行1C充电,1C放电循环直至放电容量不少于初始容量的85%,但循环次数不多于3次.
三十一、什么是温升实验
将电池充满电后放进烘箱,以每分钟5℃的速度升高烘箱温度,一直到烘箱温度达150℃,并将150℃保持10分钟,电池不应爆炸或起火.
三十二、什么是温度循环实验
温度循环实验包含27个循环,每个循环由以下步骤组成:
1.电池从常温转为温度66±3℃,湿度15±5%条件下放置1小时;
2.然后转为在温度为33±3℃,湿度90±5%的条件下放置1小时;
3.然后条件转为温度为-40±3℃放置1小时;
4.电池在温度为25℃下搁置0.5小时.
此4步即完成一个循环,经过此27个循环实验后,电池应该无漏液,爬碱,生锈,或其它异常情况出现.
签到天数: 472 天[LV.9]以坛为家II
三十三、什么是温度震荡实验
该实验需要两个恒温箱,其中一个为66℃,一个为-40℃,每一个循环由下面步骤组成:电池在-40℃放置1小时后,在5秒内转移到66℃烘箱内烘烤1小时,这个循环实验应该从低温开始,然后在高温结束,整个过程应为24个循环,电池经过循环实验,应该不会出现任何电性能问题.
三十四、什么是灼烧实验
在防爆箱内,将充满电的电池在蓝色火焰上烘烤,电池安全阀应在一段时间后开启.
三十五、什么是IEC标准?电池常用标准有哪些?
IEC即国际电工委员会(International Electrical Commission),是由各国电工委员会组成的世界性标准化组织,其目的是为了促进世界电工电子领域的标准化.其中关于镍镉电池的标准为IEC285,关于镍氢电池的标准是IEC61436,锂离子电池目前IEC无标准,一般电池行业依据的是SANYO或Panasonic的标准。
电池常用IEC标准有:镍镉电池的标准为IEC;镍氢电池的标准为IEC;锂电池的标准为IEC.
电池常用国家标准有:镍镉电池的标准为
GB/TGB/T;镍氢电池的标准为 GB/TGB/T;锂电池的标准为
GB/TYD/T998-1999,GB/T.
另外电池常用标准也有日本工业标准JIS C 关于电池的标准及SANYOPANASONIC公司制定的关于电池企业标准.
签到天数: 472 天[LV.9]以坛为家II
镍氢电池的组成
在镍氢电池的组成中,除了正、负电极材料和电解液之外,还有一些相关高分子材料,比如电池隔膜材料、密封材料、粘结剂等,这些材料的优劣对电池的自放电、充放电循环性能和使用寿命、电池的稳定性等也起着至关重要的作用。
我们承担的研究任务包括镍氢电池用隔膜材料、极板成型用粘合剂、密封圈等的研制和产业化开发。经过几年的努力,我们在电池用相关高分子材料的研究和生产方面取得了一些重要的成果,为我国镍氢电池的发展作出了贡献。
隔膜材料:镍氢电池的心脏
隔膜是构成电池的基本材料之一。为了提高电池的比容量和比能量、降低电池的内阻,需要尽量减小正负电极之间的距离。电池隔膜置于正负电极之间,起到既可以使两电极尽量靠近又可避免正负极活性物质接触短路的作用。好的镍氢电池隔膜要求电子绝缘、高度离子导电、薄而均匀、力学强度好、耐强碱和电化学稳定性好。我国在“九五”计划前对隔膜的研究很少,国内也没有专业生产隔膜的厂家,更没有镍氢电池专用的隔膜材料,主要从国外进口尼龙无纺布。这种尼龙无纺布隔膜在电池自放电、内压、充放电循环寿命、耐碱性和化学稳定性等方面不够令人满意。
我们根据镍氢电池隔膜必须具有高的力学强度、优良的亲水性和高的离子传导性的基本要求,选用高绝缘性高稳定性的聚烯烃无纺布为隔膜基材,通过亲水化改性处理、提高力学强度的改性处理和综合性能优化,研制出了综合性能优良的镍氢电池用隔膜材料。这种隔膜在吸碱量、电解液浸润速度和力学性能等方面优于或相当于国外同类产品。我们研制和生产的隔膜的基本性能如下:吸碱量( g/g)≥200%;浸润速度(1min)≥20mm;拉伸强度≥150N/5cm。我们还实现了这种隔膜的连续化制备,其工艺流程如下:
在此基础上与营口向阳化工厂合作进行了电池隔膜制备的中试研究,设计了工艺流程和各工序的要求和设备配置,建设了一条挤压熔融流涎镍氢电池专用隔膜生产线。设计规模为年产10万平方米。使用这种隔膜组装的镍氢电池,其性能与使用进口隔膜组装的电池相当。
粘合剂材料:镍氢电池的血液
电极成型用粘合剂对电池的制作也非常重要,因为电极材料都是固体粉末,必须把它们粘合压制到一起成为电极板才能使用,这就需要使用粘合剂。但粘合剂本身一般无电化学活性、又是电子绝缘体,因此在达到极板成型的前提下,粘合剂的用量越少越好。粘合剂需要高的电化学稳定性(在电池充放电过程中保持性能稳定),对于镍氢电池电极用的粘合剂,还需要抗强碱的能力,因为镍氢电池中使用的是强碱电解液。另外粘合剂最好能具有电子或离子导电性。目前国内外大量使用改性的聚四氟乙烯乳液。但它存在用量大电池内阻较大负载平台过低,在循环充放电过程中电极材料容易散落,价格高等缺点。我们考虑到镍氢电池负极粘合剂应具有好的亲水性以使电极和电解液的相容性好,又要具有一定的疏水性以使电极具有好的氢气吸收和透过性能,为此采用了多元共聚的技术,合成了兼具亲水性和疏水性高粘度高粘附力的镍氢电池粘合剂,这种粘合剂在电极片成型过程中形成交联网络,具有良好的耐碱性,韧性也有较大提高。另外,我们还合成了适用于镍氢电池的具有一定离子导电性的新型粘合剂,这种粘结剂掺入了主链型梳形的固体电解质,达到了既能传输电解质,又能保持化学稳定性,其电导率达到10-6S /cm。
国家高技术新型储能材料工程开发中心使用我们的粘结剂,负极粘合剂用量可降到2%(使用聚四氟乙烯是7-8%),电池负极成片率可达97%。该项目已建立了年产500吨粘合剂生产能力的生产厂。
密封材料:镍氢电池的皮肤
密封材料对镍氢电池的充放电性能和使用寿命也起到至关重要的作用,因为镍氢电池使用的是氢氧化钾水溶液,并且为了提高电池的容量,电解液的用量都尽量减少,这就要求电池在使用过程中电解液不能泄漏和挥发减少,否则会严重降低电池的容量。另外,镍氢电池充电时产生氢,这些氢一部分被吸入储氢合金电极中,但还有一部分以氢气形式存在于电池中,电池放电时这些氢是负极电化学反应的活性物质,如果发生氢气的泄漏也会严重影响电池的充放电性能和使用寿命,因此需要对镍氢电池产品进行严格密封,这就需要高性能的密封材料。
电池密封材料主要指电池封口使用的密封圈和密封剂。电池密封圈目前国内广泛采用改性聚烯烃或尼龙,都需要采用封口胶才能阻止碱液渗漏。
我们采用具有优良性能的热弹性体代替聚烯烃、尼龙等塑料材料,通过共聚、共混及合成稳定剂改进基质材料的高温耐碱性,研制成功满足镍氢电池密封要求的65°C级的镍氢电池密封圈。这种密封圈免用封口胶就能达到很好的密封效果。我们设计制备了5升合成设备,加工了34孔全自动脱模模具,形成年产2000万支密封圈的生产能力。
签到天数: 472 天[LV.9]以坛为家II
我们采用具有优良性能的热弹性体代替聚烯烃、尼龙等塑料材料,通过共聚、共混及合成稳定剂改进基质材料的高温耐碱性,研制成功满足镍氢电池密封要求的65°C级的镍氢电池密封圈。这种密封圈免用封口胶就能达到很好的密封效果。我们设计制备了5升合成设备,加工了34孔全自动脱模模具,形成年产2000万支密封圈的生产能力。
国内镍氢电池的发展现状
自90年代初,我国开始研制镍氢电池以来,发展至今有一定规模(日产2万节以上)的厂家近200家。目前生产的电池无论在数量上还是在质量上都有了明显的提高,用于通讯领域的小容量电池已基本上独霸国内市场,并大量出口至国外。用于电动车(包括电动自行车和摩托车)的动力型镍氢电池也开发成功,正在往产业化的方向上努力。镍氢电池的技术水平已达到或接近国际先进水平,最重要的是培养了一大批这个领域的技术和管理人才。另外,我国拥有世界上最大的镍氢电池负极原材料———稀土储存量,这为我国大批量生产镍氢电池提供了有利的条件。
科学家剪影
方世璧中国科学院化学研究所有机固体室研究员、博士生导师、副所长、党委书记。生于1944年10月。主要研究领域为功能高分子和高能量密度电池的电极材料,已在国内外学术期刊和国际学术会议上发表论文100余篇,出版译著一部,申请专利近20项,推广应用成果14项。
李永舫中国科学院化学研究所有机固体室研究员、博士生导师。生于1948年8月。主要研究领域为导电聚合物电化学、聚合物发光电池和高能量密度化学电源等。已在国内外学术期刊发表论文120多篇,发表论文 S CI引用400多次。
电池隔膜(Separator)
隔膜是电池中除正负电极和电解液之外的另一重要组成,它是将正极和负极隔开的一层具有电子绝缘性和离子导电性的薄膜。在实际使用中,我们总是希望电池具有较小的体积和较高的充放电容量,减小电池正负电极之间的距离是在保持容量不变的情况下减小体积的有效途径,但是正负极靠得太近就会有内部短路的危险,隔膜的作用就是既可使正负电极尽量靠近而又可避免它们相互接触短路。好的隔膜材料需要具有良好的电解液吸收性能和高的力学强度,根据电池中使用电解液的不同隔膜材料也有所不同。锂离子电池使用有机电解液,一般使用带微孔的聚丙烯薄膜或无纺布作隔膜。镍氢电池使用高浓度氢氧化钾水溶液做电解液,则使用经亲水化处理的尼龙无纺布或聚丙烯无纺布作隔膜。
镍氢电池的使用与保养
切忌将移动电话电池的正负极部分与金属物品接触,在放置时也要远离金属物品及温度高的地方。具备条件的,可以找一个小口袋单独放起来。
在给电池充电时,不要将充电器与电视机等物品放在一起。
新电池最初几次充放电容量达不到最大,须反复进行几次充放电循环后电池才能达到最大容量;尽量使用专用充电器对电池进行充电;不要反极充电,这可能会导致电池膨胀或爆炸;充电时不是时间长就是最好,但也不是短时间即可达到充电效果。
镍氢电池无记忆效应,无需等电池完全耗尽能量后再充电。若您的电池储放了几个月,使用时间会缩减很多,这不是电池的质量问题,是因为电池被放置一段时间后便会进入“休眠”状态,您只需3—5次的连续充放电便能把电池“唤醒”,恢复预期的使用时间。
一块合格的手机电池的使用寿命至少有一年,邮电部关于手机电源的技术要求中规定电池的循环使用不少于400次。但是电池会随着充放电循环次数的增加,电池内部正负极材料、隔膜材料都会劣化,电解液也会逐渐减少,电池整体性能会逐渐下降。一般电池一年后可保留70%的电容量。
新买的电池,一般都有部分电容量。因为正规的厂家在电池出厂前均做过电容量检测,所以都有过充放电试验,但这并不意味着不用充电。
[中国科学院化学研究所方世璧、李永舫]
签到天数: 472 天[LV.9]以坛为家II
转完!!版主不会说我刷楼吧,呵呵!
签到天数: 4 天[LV.2]偶尔看看I
好多内容呀
签到天数: 472 天[LV.9]以坛为家II
内容太多,估计大家不喜欢看啊!!
签到天数: 472 天[LV.9]以坛为家II
汗,真冷清啊!!
该用户从未签到
好长好长…
该用户从未签到
好多,好想学会它哦
签到天数: 2 天[LV.1]初来乍到
收藏了,慢慢体会
该用户从未签到
基础的东西要掌握。
签到天数: 1 天[LV.1]初来乍到
脑子笨,太多知识塞不进。。。
以上言论纯属个人观点,与手电大家谈立场无关。
最佳浏览模式:IE8.0
Powered by}

我要回帖

更多关于 师德体现在哪些方面 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信