什么叫开漏输出和推挽输出出

详细解说开漏输出和推挽输出_老司机_新浪博客
详细解说开漏输出和推挽输出
1,开漏输出(Open-Drain)
&首先讲一下集电极开路输出(Open-Collector),单片机I/O常用的输出方式的开漏输出(Open-Drain),漏极开路电路概念中提到的“漏”是指
MOSFET的漏极。同理,集电极开路电路中的“集”就是指三极管的集电极。在数字电路中,分别简称OD门和OC门。​
&典型的集电极开路电路如图所示。电路中右侧的三极管集电极什么都不接,所以叫做集电极开路,左侧的三极管用于反相作用,即左侧输入“0”时左侧三极管截止,VCC通过电阻加到右侧三极管基极,右侧三极管导通,右侧输出端连接到地,输出“0”。​
&&从图中电路可以看出集电极开路是无法输出高电平的,如果要想输出高电平可以在输出端加上上拉电阻。因此集电极开路输出可以用做电平转换,通过上拉电阻上拉至不同的电压,来实现不同的电平转换。
& &用做驱动器,由于OC门电路的输出管的集电极悬空,使用时需外接一个上拉电阻Rp到电源VCC。OC门使用上拉电阻以输出高电平,此外为了加大输出引脚的驱动能力,上拉电阻阻值的选择原则:从降低功耗及芯片的灌电流能力考虑应当足够大;从确保足够的驱动电流考虑应当足够小。
&将OC门输出连在一起时,再通过一个电阻接外电源,可以实现“线与”逻辑关系。只要电阻的阻值和外电源电压的数值选择得当,就能做到既保证输出的高、低电平符合要求,而且输出三极管的负载电流又不至于过大。
&集电极开路输出除了可以实现多门的线与逻辑关系外,通过使用大功率的三极管还可用于直接驱动较大电流的负载,如继电器、脉冲变压器、指示灯等。
&由于现在MOS管用普遍,而且性能要比晶体管要好,所以很多开漏输出电路,和后面要讲的推挽输出电路都用MOS管实现。
&再来就是开漏输出电路,和集电极开路一样,顾名思义,开漏电路就是指从MOSFET的漏极输出的电路。典型的用法是在漏极外部的电路添加上拉电阻到电源如图所示。完整的开漏电路应由开漏器件和开漏上拉电阻组成。这里的上拉电阻R的阻值决定了逻辑电平转换的上升/下降沿的速度。阻值越大,速度越低,功耗越小。因此在选择上拉电阻时要兼顾功耗和速度。标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。​
&&很多单片机等器件的I/O就是漏极开路形式,或者可以配置成漏极开路输出形式,如51单片机的P0口就为漏极开路输出。在实际应用中可以将多个开漏输出的引脚连接到一条线上,这样就形成“线与逻辑”关系。注意这个公共点必须接一个上拉电阻。当这些引脚的任一路变为逻辑0后,开漏线上的逻辑就为0了。在I2C等接口总线中就用此法判断总线占用状态。
&同集电极开路一样,利用外部电路的驱动能力(驱动能力相对集电极开路要强一点),减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经上拉电阻,再经MOSFET到GND。IC内部仅需很下的栅极驱动电流,因此漏极开路也常用于驱动电路中。
2,推挽输出(Push-Pull)​
&在功率放大器电路中经常采用推挽放大器电路,这种电路中用两只三极管构成一级放大器电路,如图所示。两只三极管分别放大输入信号的正半周和负半周,即用一只三极管放大信号的正半周,用另一只三极管放大信号的负半周,两只三极管输出的半周信号在放大器负载上合并后得到一个完整周期的输出信号。​
&&推挽放大器电路中,一只三极管工作在导通、放大状态时,另一只三极管处于截止状态,当输入信号变化到另一个半周后,原先导通、放大的三极管进入截止,而原先截止的三极管进入导通、放大状态,两只三极管在不断地交替导通放大和截止变化,所以称为推挽放大器。输出既可以向负载灌电流,也可以从负载抽取电流.​
&4,特点总结
开漏输出:实现电平转换,实现”线与“逻辑(I2C等接口总线应用中),利用外电路提高驱动能力,利用上拉电阻提供高电平,显然,没有上拉电阻只能输出低电平。
推挽输出:可以吸电流也可以灌电流,相对于开漏,输出电平取决于IC电源。然而,一条总线上只能有一个推挽输出期间。
如果你想要电平转换速度快的话,那么就选push-pull,但是缺点是功耗相对会大些。
如果你想要功耗低,且同时具有“线与”的功能,那么就用open-drain的模式。
&STM32F103端口位的基本结构如图所示,从图中可以看到典型的推挽输出电路与上下拉电阻,当N-MOS被激活时就变成了典型的开漏输出模式,当N-MOS和P-MOS同时被激活时就变成了典型的推挽输出模式,通过上拉电阻和下拉电阻的开关控制可以使端口处于上拉或者下拉输入模式。
​根据开漏输出和推挽输出的特点,可以很容易判断在以下应用中应当工作在推挽输出模式(或者复用推挽输出):
驱动应用中,驱动LED、蜂鸣器等
USART_TX、USART_CK、USART_RTS、MOSI、SPI主模式SCK、CAN_TX等需要较强驱动能力的场合
而在I2C等接口总线应用中,由于需要“线与”判断总线占用状态,以及需要使用电平转换的场合需要将I/O配置成开漏输出的模式。
博客等级:
博客积分:0
博客访问:2,170
关注人气:0
荣誉徽章:简单一点理解推挽输出与开漏输出
我的图书馆
简单一点理解推挽输出与开漏输出
简单一点理解推挽输出与开漏输出&1. 推挽输出与开漏输出的区别:&&&推挽输出:可以输出高,低电平,连接数字器件&&&开漏输出:输出端相当于三极管的集电极,要得到高电平状态需要上拉电阻才行,适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。2. 开漏电路特点&在电路设计时我们常常遇到开漏(open drain)和开集(open collector)的概念。所谓开漏电路概念中提到的“漏”就是指MOSFET的漏极。同理,开集电路中的“集”就是指三极管的集电极。开漏电路就是指以MOSFET的漏极为输出的电路。一般的用法是会在漏极外部的电路添加上拉电阻。完整的开漏电路应该由开漏器件和开漏上拉电阻组成。&组成开漏形式的电路有以下几个特点:&1. 利用外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。&2. 可以将多个开漏输出的Pin,连接到一条线上。形成 “与逻辑” 关系。这也是I2C,SMBus等总线判断总线占用状态的原理。&3. 可以利用改变上拉电源的电压,改变传输电平。这样我们就可以用低电平逻辑控制输出高电平逻辑了。&4. 开漏Pin不连接外部的上拉电阻,则只能输出低电平(因此对于经典的51单片机的P0口而言,要想做输入输出功能必须加外部上拉电阻,否则无法输出高电平逻辑)。&5. 标准的开漏脚一般只有输出的能力。添加其它的判断电路,才能具备双向输入、输出的能力。 Push-Pull输出就是一般所说的推挽输出,在CMOS电路里面应该较CMOS输出更合适,应为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。 push-pull是现在CMOS电路里面用得最多的输出级设计方式。&3. 什么是推挽结构&一般是指两个三极管分别受两互补信号的控制,总是在一个三极管导通的时候另一个截止。要实现线与需要用OC(open collector)门电路,如果输出级的有两个三极管,始终处于一个导通、一个截止的状态,也就是两个三级管推挽相连,这样的电路结构称为推拉式电路或图腾柱(Totem- pole)输出电路(可惜,图无法贴上)。当输出低电平时,也就是下级负载门输入低电平时,输出端的电流将是下级门灌入T4;当输出高电平时,也就是下级负载门输入高电平时,输出端的电流将是下级门从本级电源经 T3、D1 拉出。这样一来,输出高低电平时,T3 一路和 T4 一路将交替工作,从而减低了功耗,提高了每个管的承受能力。又由于不论走哪一路,管子导通电阻都很小,使RC常数很小,转变速度很快。因此,推拉式输出级既提高电路的负载能力,又提高开关速度。供你参考。 推挽电路是两个参数相同的三极管或MOSFET,以推挽方式存在于电路中,各负责正负半周的波形放大任务,电路工作时,两只对称的功率开关管每次只有一个导通,所以导通损耗小效率高。 输出既可以向负载灌电流,也可以从负载抽取电流
TA的最新馆藏[转]&[转]&[转]&[转]&[转]&
喜欢该文的人也喜欢基本内容/开漏输出
开漏输出就是不输出电压,低电平时接地,高电平时不接地。如果外接上拉电阻,则在输出高电平时电压会拉到上拉电阻的电源电压。这种方式适合在连接的外设电压比单片机电压低的时候。开漏输出跟集电极开路十分相似,工作原理也是一样的。不同的是,使用的场效应管而已。使用时要加上拉电阻。参考:集电极开路输出(OC)、漏极开路输出(OD)、推挽输出
&|&相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和专业认证智愿者沟通。
此词条还可添加&
编辑次数:3次
参与编辑人数:3位
最近更新时间: 23:33:03
申请可获得以下专属权利:
贡献光荣榜您当前的位置:&>&&>&&>&
单片机I/O口推挽输出与开漏输出的区别
推挽(push-pull):推挽输出的器件是指输出脚内部集成有一对互补的MOSFET,当Q1导通、Q2截止时输出高电平;而当Q1截止导通、Q2导通时输出低电平。一个导通另一个就截止。
集电极开路:输出端相当于孤立三极管的集电极. 要得到高电平状态需要上拉电阻才行. 适合于做电流型的驱动,其吸收电流的能力相对强(一般20ma以内)。
1集电极开路输出的结构
1& 如图1所示,右边的那个三极管集电极什么都不接,所以叫做集电极开路(左边的三极管为反相之用,使输入为&0&时,输出也为&0&)。对于图1,当左端的输入为&0&时,前面的三极管截止(即集电极C跟发射极E之间相当于断开),所以5V电源通过1K电阻加到右边的三极管上,右边的三极管导通(即相当于一个开关闭合);当左端的输入为&1&时,前面的三极管导通,而后面的三极管截止(相当于开关断开)。
我们将图1简化成图2的样子。图2中的开关受软件控制,&1&时开关闭合时,输出直接接地,所以输出电平为0。&0&时当开关断开时,则输出端悬空了,即高阻态(顺便了解下高阻态)。这时电平状态未知,如果后面一个电阻负载(即使很轻的负载)到地,那么输出端的电平就被这个负载拉到低电平了,所以这个电路是不能输出高电平的。
2& 图三是集电极开路加上拉电阻的情况。图三中那个1k的电阻即是上拉电阻。如果开关闭合,则有电流从1k电阻及开关上流过,但由于开关闭和时电阻为0(方便我们的讨论,实际情况中开关电阻不为0,另外对于三极管还存在饱和压降),所以在开关上的电压为0,即输出电平为0。如果开关断开,则由于开关电阻为无穷大(同上,不考虑实际中的漏电流),所以流过的电流为0,因此在1k电阻上的压降也为0,所以输出端的电压就是5v了,这样就能输出高电平了。
关于上拉电阻的选择问题。我们从图三知道,这个输出的内阻是比较大的(即1k&),如果接一个电阻为r的负载,通过分压计算,就可以算得最后的输出电压为5*r/(r+1000)伏,即5/(1+1000/r)伏。所以,如果要达到一定的电压的话,r就不能太小。如果r真的太小,而导致输出电压不够的话,那我们只有通过减小那个1k的上拉电阻来增加驱动能力。但是,上拉电阻又不能取得太小,因为当开关闭合时,将产生电流,由于开关能流过的电流是有限的,因此限制了上拉电阻的取值,另外还需要考虑到,当输出低电平时,负载可能还会给提供一部分电流从开关流过,因此要综合这些电流考虑来选择合适的上拉电阻。
如果我们将一个读数据用的输入端接在输出端,这样就是一个io口了(51的io口就是这样的结构,其中p0口内部不带上拉,而其它三个口带内部上拉),当我们要使用输入功能时,只要将输出口设置为1即可,这样就相当于那个开关断开,而对于p0口来说,就是高阻态了。
3& 对于漏极开路(OD)输出,跟集电极开路输出是十分类似的。将上面的三极管换成场效应管即可。这样集电极就变成了漏极,OC就变成了OD,原理分析是一样的。
2 推挽输出
推挽输出的结构就是把上面的上拉电阻也换成一个开关,当要输出高电平时,上面的开关通,下面的开关断;而要输出低电平时,则刚好相反。比起OC或者OD来说,这样的推挽结构高、低电平驱动能力都很强。如果两个输出不同电平的输出口接在一起的话,就会产生很大的电流,有可能将输出口烧坏。而上面说的OC或OD输出则不会有这样的情况,因为上拉电阻提供的电流比较小。如果是推挽输出的要设置为高阻态时,则两个开关必须同时断开(或者在输出口上使用一个传输门),这样可作为输入状态,AVR单片机的一些IO口就是这种结构。
一般情况下我们在电路设计编程过程中设置单片机,大多是按照固有的模式去做的,做了几年这一行了,也没碰到过什么问题。昨天就遇到了这样一个问题,电路结构如图一,在这种情况下STC单片机与410单片机通讯是没问题的但是与PC就无法通讯了,STC收不到PC的命令,以前410的位置是用的STC的片子一直没问题,我想也许是驱动能力不够,在410TX端加了上拉,不过没起作用。用示波器监视串口得到面的波形如图二:
这说明sp3232下拉得不够,于是加了下拉,还是没起作用。又把410端口内部的上拉去掉,结果还是一样。最后请教老师,在410程序里将TX的工作方式由推挽式改为开漏式,一切ok~!
附另外一篇文章:/9mcubbs/forum.php?mod=viewthread&tid=1353讲的也挺好
GPIO的推挽输出和开漏输出(open-drain与push-pull)
GPIO的功能,简单说就是可以根据自己的需要去配置为输入或输出。但是在配置GPIO管脚的时候,常会见到两种模式:开漏(open-drain,漏极开路)和推挽(push-pull)。
对此两种模式,有何区别和联系,下面整理了一些资料,来详细解释一下:
图表 1 Push-Pull对比Open-Drain
Push-Pull推挽输出
Open-Drain开漏输出
输出的器件是指输出脚内部集成有一对互补的MOSFET,当Q1导通、Q2截止时输出高电平;而当Q1截止导通、Q2导通时输出低电平
开漏电路就是指以MOSFET的漏极为输出的电路。指内部输出和地之间有个N沟道的MOSFET(Q1),这些器件可以用于电平转换的应用。输出电压由Vcc'决定。Vcc'可以大于输入高电平电压VCC(up-translate)也可以低于输入高电平电压VCC(down-translate)。
某老外的更加透彻的解释
Push-pull输出,实际上内部是用了两个晶体管(transistor),此处分别称为top transistor和bottom transistor。通过开关对应的晶体管,输出对应的电平。top transistor打开(bottom transistor关闭),输出为高电平;bottom transistor打开(top transistor关闭),输出低电平。Push-pull即能够漏电流(sink current),又可以集电流(source current)。其也许有,也许没有另外一个状态:高阻抗(high impedance)状态。除非Push-pull需要支持额外的高阻抗状态,否则不需要额外的上拉电阻。
Open-drain输出,则是比push-pull少了个top transistor,只有那个bottom transistor。(就像push-pull中的那样)当bottom transistor关闭,则输出为高电平。此处没法输出高电平,想要输出高电平,必须外部再接一个上拉电阻(pull-up resistor)。Open-drain只能够漏电流(sink current),如果想要集电流(source current),则需要加一个上拉电阻。
常见的GPIO的模式可以配置为open-drain或push-pull,具体实现上,常为通过配置对应的寄存器的某些位来配置为open-drain或是push-pull。当我们通过CPU去设置那些GPIO的配置寄存器的某位(bit)的时候,其GPIO硬件IC内部的实现是,会去打开或关闭对应的top transistor。相应地,如果设置为了open-d模式的话,是需要上拉电阻才能实现,也能够输出高电平的。因此,如果硬件内部(internal)本身包含了对应的上拉电阻的话,此时会去关闭或打开对应的上拉电阻。如果GPIO硬件IC内部没有对应的上拉电阻的话,那么你的硬件电路中,必须自己提供对应的外部(external)的上拉电阻。而push-pull输出的优势是速度快,因为线路(line)是以两种方式驱动的。而带了上拉电阻的线路,即使以最快的速度去提升电压,最快也要一个常量的R&C的时间。其中R是电阻,C是寄生电容(parasitic capacitance),包括了pin脚的电容和板子的电容。但是,push-pull相对的缺点是往往需要消耗更多的电流,即功耗相对大。而open-drain所消耗的电流相对较小,由电阻R所限制,而R不能太小,因为当输出为低电平的时候,需要sink更低的transistor,这意味着更高的功耗。(此段原文:because the lower transistor has to sink that current wh that means higher power consumption.)而open-drain的好处之一是,允许你cshort(?)多个open-drain的电路,公用一个上拉电阻,此种做法称为wired-OR连接,此时可以通过拉低任何一个IO的pin脚使得输出为低电平。为了输出高电平,则所有的都输出高电平。此种逻辑,就是&线与&的功能,可以不需要额外的门(gate)电路来实现此部分逻辑。
图表&2 push-pull原理图#FormatImgID_2#
图表&3 open-drain原理图
#FormatImgID_3# &
图表&4 open-drain&线与&功能
#FormatImgID_4#
(1)可以吸电流,也可以贯电流;(2)和开漏输出相比,push-pull的高低电平由IC的电源低定,不能简单的做逻辑操作等。
对于各种电压节点间的电平转换非常有用,可以用于各种电压节点的Up-translate和down-translate转换
(2)可以将多个开漏输出的Pin脚,连接到一条线上,形成&与逻辑&关系,即&线与&功能,任意一个变低后,开漏线上的逻辑就为0了。这也是I2C,SMBus等总线判断总线占用状态的原理。(3)利用 外部电路的驱动能力,减少IC内部的驱动。当IC内部MOSFET导通时,驱动电流是从外部的VCC流经R pull-up ,MOSFET到GND。IC内部仅需很下的栅极驱动电流。(4)可以利用改变上拉电源的电压,改变传输电平:图表&5 open-drain输出电平的原理
#FormatImgID_5# IC的逻辑电平由电源Vcc1决定,而输出高电平则由Vcc2决定。这样我们就可以用低电平逻辑控制输出高电平逻辑了。
一条总线上只能有一个push-pull输出的器件;
开漏Pin不连接外部的上拉电阻,则只能输出低电平。当输出电平为低时,N沟道三极管是导通的,这样在Vcc'和GND之间有一个持续的电流流过上拉电阻R和三极管Q1。这会影响整个系统的功耗。采用较大值的上拉电阻可以减小电流。但是,但是大的阻值会使输出信号的上升时间变慢。即上拉电阻R pull-up的阻值 决定了逻辑电平转换的沿的速度
。阻值越大,速度越低功耗越小。反之亦然。
在CMOS电路里面应该叫CMOS输出更合适,因为在CMOS里面的push-pull输出能力不可能做得双极那么大。输出能力看IC内部输出极N管P管的面积。push-pull是现在CMOS电路里面用得最多的输出级设计方式。
【open-drain和push-pull的总结】
对于GPIO的模式的设置,在不考虑是否需要额外的上拉电阻的情况下,是设置为open-drain还是push-pull,说到底,还是个权衡的问题:
如果你想要电平转换速度快的话,那么就选push-pull,但是缺点是功耗相对会大些。
如果你想要功耗低,且同时具有&线与&的功能,那么就用open-drain的模式。(同时注意GPIO硬件模块内部是否有上拉电阻,如果没有,需要硬件电路上添加额外的上拉电阻)
正所谓,转换速度与功耗,是鱼与熊掌,二则不可兼得焉。
扩展阅读:}

我要回帖

更多关于 p管开漏输出 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信