量子纠缠与心灵感应 究竟反映的是 什么对称性

统一之路:量子纠缠、时空几何与机器学习
我的图书馆
统一之路:量子纠缠、时空几何与机器学习
量子纠缠、时空几何与机器学习记集智-凯风研读营活动“金秋十月。密云郊区的古北水镇。我与吴令飞漫步在曲径通幽的小路上。红黄绿三种颜色争先恐后地挤入画面,仿佛在张扬那秋色特有的张力与活性。”古北小镇的风景普遍联系万事万物是普遍联系的,这种观点并不新奇,然而令人意想不到的是这一哲学观点正在引发一场从微观到宏观的科学范式转变。更令人意想不到的是,我们正在举行的凯风-集智研读营——一个仅仅由16个年轻学者参与的为期5天的小型研讨会——正在见证这一变革。我的眼前不禁又浮现出尤亦庄在讲台上的奕奕神采。这个总是低头沉思的大男孩在讲起物理的时候就仿佛换了一个人,声音高亢而洪亮。更有意思的是他讲的内容。在回程的大巴上,尤亦庄抓紧时间写论文用著名物理学家文小刚的话说,现在的理论物理学正在经历一场革命,这场革命不但有望统一相对论和量子力学,更有可能统一微观与宏观、物质与信息。而这一革命背后,正是从面向对象的物理学到面向关系的物理学的范式转变。在新的图景下,我们的宇宙是一台大型的量子计算机。生命、智能、人类社会都不过是这台大型计算机上涌现出来的Pattern。一切都要从量子纠缠说起。所谓的量子纠缠是指两个量子比特存在着的一种很强的联系,在这种联系下它们仿佛就是一个整体,甚至这两个比特已然相隔万里。这就是让大科学家爱因斯坦也唏嘘不已、不愿意接受的量子纠缠:两个明明分离的部分却表现得像一个整体。正是因为量子纠缠的存在,量子体系可以拥有比经典系统更强的信息存储能力,因为信息不仅可以存储在独立的量子比特中,还可以存储在两个比特的纠缠——即关系之中。而且,纠缠存储的信息是两个比特,足足比经典的相关性增加了一比特的存储量。& “我就不明白,量子纠缠与经典的相关性究竟有什么联系?”,吴令飞一边嚓嚓地踩着落叶一边问道,“比如,我有一对手套,我把其中的一支送到月球上,当我看到我自己手中的手套是左手的时候,我自然可以推知月球上的手套必然是右手,这不是也是一种纠缠吗?”“嗯,这个问题的确问得好……”我一边沉思着一边回忆着尤亦庄给出的解释,复述给吴令飞,“然而,在手套这个例子中,当你得知了手套的左右属性后,你就不能在这二者的联系中获得更多信息了。而假设手套是量子的,你不仅可以从一支量子手套的测量中获得另一支手套是右手的信息,你还可以测量手套的第二个属性,从而获得额外的一比特的信息。也就是说,量子的两比特纠缠会比经典的两比特相关包含更多的信息,这恰恰是贝尔不等式所推导出的内容。”“物理学家都是外星人吗?”,当尤亦庄讲到我们可以用张量网络来表示量子纠缠的时候,苑明理脱口而出这句话。的确,张量网络不仅可以巧妙地用网络图形表示复杂的高阶张量计算,而且可以简单轻松地表达处于复杂纠缠的量子体系。如下图:张量网络示例,节点表示量子比特,连线表示纠缠网络中的节点都是量子比特,连边就表示这两个量子比特之间的纠缠,连边的权重表示了纠缠熵。有了这种工具,我们就可以轻而易举地研究多体之间的纠缠关系,还可以进行复杂的张量计算。一个量子系统的演化完全可以用这个网络的演化来表示。有意思的是张量网络的演化会服从一些类似社会网络中的规则:链接具有一定的传递性,即如果A和B相连,且B和C相连,那么A就很可能会与C相连。有了这种传递性,一个网络在演化的过程中就会更容易地形成长程连接。所以当我们制备了一个量子体系,那么由于它与环境的退相干(de-coherence)作用,它就会与环境建立越来越多的链接。既然信息都存储在了这些纠缠之中,那么一个体系的熵就可以形象地表现为该系统与外界发生的联系数量(也就是张量网络中的连边)。所以,当我们想知道某一个系统(张量网络中的一个子区域)的熵的时候,我们只需要知道当我们把该系统完全清晰地划分出来,所需要切断它与外界的连边总权重之和。于是,结合前面两点,我们就能得出热力学第二定律。我们知道,热力学第二定律可以表述为:任何一个孤立系统的演化都趋于熵增,也就是存在着一个时间箭头,它的指向为熵增。而与其矛盾的是,微观世界的物理学(无论是牛顿经典力学还是量子力学)中的演化都是时间反演对称的,即不存在时间箭头。那么,我们观察到的熵增现象是怎么回事儿呢?对一个张量网络的局部进行测量必然会切断一些联系,这些被切断的纠缠总量就是系统的熵人们曾试图从牛顿经典力学推导出热力学第二定律,但都没有成功。而最近几年的物理学进展却使得我们可以从量子纠缠的角度重新推导热力学第二定律。一方面,任何一个量子体系的纠缠都在逐渐趋向于长程弱联系;另一方面,我们每一次测量都只能测量到整个系统中的一小部分,于是,我们就不得不割裂这一小部分与系统外界的量子纠缠。而我们知道,这些被割裂边的权重之和就是被测量体系的熵。所以,我们就会得到熵会不断增加的结论。让我们换一种表述方法,其实所谓的熵增并不存在。因为,当系统按照量子力学薛定谔方程的模式进行演化的时候,系统会建立越来越多的长程联结,即系统的每一个局部的信息都会弥散在整个系统之中。而我们人类无法对整个系统(宇宙)进行测量,而只能测量到系统之中的一小部分,于是,我们就无法还原弥散在整个系统之中的信息,而得到熵不断增加的结论。小镇里面的游人开始渐渐多了起来,一些游客与我擦肩而过,时不时还会发生一些身体上的接触。“他们在带走我身上的信息”,我突然冒出了这样一个念头。可不是吗,假如我是一个量子比特,我与这些人的每一次碰撞实际上就是一起纠缠事件,而每一次纠缠都会使得我身上的信息被不断分散在整个人群之中。假如我想让我某一天的生活重新来过,我只需要将与我相互作用过的每一个人集合起来,收集我身上的信息,原则上讲就能够让时间停止甚至逆转。我突然想起了前段时间听到过的一个MIT学生的非常有创意的项目构思:利用机器学习技术,我们也许可以通过地面上的一张小纸片的微小震动模式来推断房间中人们发声所说出来的语言是什么,也许未来不需要窃听器就可以盗取信息,因为这些信息实际上都分布到了环境的每一个角落。&双曲几何当然,量子纠缠、张量网络这一套东西的威力还不仅如此,除了导出热力学第二定律外,它还能推出更多激动人心的东西。在物理中,有两个东西比较相似,一个是量子纠缠,一个是虫洞。这两种东西都具有非局域特性,同时,也都非常不稳定。所谓的虫洞,是一种时空结构,可以直接从爱因斯坦的广义相对论中得到。这种结构可以通过空间中的特殊通道,将两个原本相隔非常远的空间重新联通到一起。不过,这种结构是非常不稳定的,它的寿命也极其短暂。再来看量子纠缠,它也具有非局域特性,而且也是极其不稳定的。为了避免退相干,人们需要精心制备实验条件,这也是为什么量子计算机制造极其困难的原因。我们很难长时间维持一个长程的纠缠。正是由于量子纠缠和虫洞之间的相似性,这使得人们大胆猜测,量子纠缠实际上就是虫洞。当两个相隔很远的量子比特处于相互纠缠状态的时候,它们彼此之间实际上有着空间中的虫洞相连。于是一个存在长程关联的无引力的共形场可以等价于一个局域的量子引力场,这就是物理上著名的AdS/CFT对应。因为长程关联(纠缠)系统中的纠缠全部对应为了超空间连接的虫洞,于是,在新的AdS空间中增加了很多新的联系,这些联系就使得新空间成为一种双曲空间。如果我们将长程关联的共形场看作一个圆环,那么对应的引力场就是一个彭加来原盘(双曲空间的一个模型),如下图所示:AdS/CFT对偶。这是双曲空间的Poincare圆盘模型,图中每个三角形都是等面积的三角形。于是,越靠近边缘,三角形的数量程指数增长,表明空间的面积越大。圆环边界上的共形场论和体空间中的量子引力理论是一一对应的如上图所示,这是AdS/CFT变换的示意图,边界上存在着一个没有引力的但是处于临界状态的相互关联的共形场,而边界内部则是一个双曲空间(AdS空间)。于是,在新的空间中,长程的相互联系消失了,空间成为了双曲的。从数学上说,双曲空间就是曲率为负的空间。它实际上可以看成是树这种结构的离散版本。在这种空间中,空间的度规会随着距离的增大而呈指数增长。这种AdS/CFT对应不仅能够让我们看到引力理论和处于临界状态的长程关联系统之间的联系,而且还能够帮助我们找到理解普遍存在的临界现象的方式,即双曲空间。所谓的临界现象是指系统在一定条件下所展现出来的一系列无标度效应,例如系统的各个变量呈现幂律分布和幂律相关,系统存在着尺度对称性(即分形特性)。最重要的是,临界系统都存在着长程关联,即关联强度随着尺度呈现幂律方式的衰减。由于临界系统中的长程关联,所以经过这种变换,在双曲空间中,我们就可以将这些长程关联消除掉。然而,它的代价就是增加了一个新的维度,即系统的标度。于是,沿着双曲空间Poincare圆盘的半径方向,我们可以对边界上的临界系统做持续不断的重整化操作。复杂网络如果说一个认识仅仅对理论物理问题有启发,那么我对它的兴趣就不会很大,因为我毕竟不是搞物理的。然而,体-边界对偶这套东西恰恰可以应用到复杂系统之中。认识到这一点,还要从三年前的一次集智活动谈起。时间回到了2013年的一个夏天,集智照常举办公开活动。这次,是我自己主讲,内容是复杂网络。当时,尤亦庄还是清华大学高等研究院的博士生,对复杂网络正兴趣十足。我大致列举了近些年来复杂网络发展的几个关键文章,其中讲到了一个希腊小伙Fragkiskos Papadopoulos做的工作,他提出了一个在双曲空间上生长的网络模型,如下图所示:&Papadopoulos双曲网络模型如图,这是一个在双曲空间Poincare圆盘模型上生长的网络。其中,每一个节点(对应着1,2,3……这样的编号)都有两个坐标,一个是它的极径(到中心点的距离),另一个是它的极角,每一个节点都按照双曲空间中距离最近的方式进行连接。每当一个新节点诞生的时候,它的极径就被设定为ln t,其中t就是当前时刻,而它的极角可以随机地从0到2π之间选定一个数值。每一个新节点诞生都会带来m条新的连边(m是一个参数),这些连边就将这个新节点连接到离它最近的m个近邻上。注意,这里面的距离是双曲空间中的距离。在图中,红色的类似于舌头一样的区域就是一个以新节点20为中心的双曲圆,即区域中的点到20节点的双曲距离都是相等的。也就是说,空间在径向和圆周方向并不对称。于是,新节点会连接更老的节点(ln t更小),或者是极角和自己更相近的节点。该模型将这两个坐标赋予了实际含义:极径表示的是节点的流行度,越老的节点就越流行——因为它们可以竞争得到更多的连接。而极角则被解释为流行性,即在极角方向上越靠近的节点,它们彼此越相似。所以,一个新点进入系统后,要么连接那些很有威望的老节点,要么连接和自己相似的节点。流行性和相似度构成了一对竞争。最有意思的是,该模型可以复现出著名的优先连接模型(Preferential attachment),也能够得到小世界的特性。而且,这个模型的各种变种几乎可以复现所有已知的复杂网络模型。然而,在三年前的那次讲座中,我自己却没有认识到这个模型的重要性,以为这些都只不过是酷炫的数学以及一些奇技淫巧。其实,之所以这样认识,完全是因为我当时对所谓的双曲几何这种概念非常陌生。“这不就是Anti de Sitter空间吗?”坐在台下听讲座的尤亦庄马上兴奋了起来,他兴致高昂地说道,“原来复杂网络学者们已经走到了前面!”会后,我们就对双曲几何进行了更深入地探讨。原来,我们在很多复杂系统中看到的那些诸如标度律、幂律分布、分形几何等临界现象,都可能暗示着它的背后存在着双曲几何。然而,由于时间仓促,我对这些高深的理论物理知识仍然一知半解。时间拉回了今天,当我听过了尤亦庄的精彩讲座之后,终于对什么是张量网络有了比较全面的了解,也对尤亦庄当时所说的临界系统与双曲几何的关系有了更深刻的认识。在很多复杂系统中,层级现象都非常地普遍。如果我们将层级作为一种新的维度(也就是双曲几何中的径向维度),那么我们就可以将复杂系统按照层级进行展开,这样,每一层就构成了一个尺度的相似性空间。而复杂系统之所以会展现出各种各样的临界现象,恰恰是因为它背后存在着双曲几何机制。于是,经过体-边界对偶关系,利用新的层级维度,我们就可以将普遍存在的长程相互作用化简为局域的相互作用。然而这种奇怪的双曲几何真的存在于我们身边的复杂系统吗?我们怎么没有体会到弯曲的时空呢?有意思的,董磊的报告让我们看到,由于现代城市中的疏运交通网络的作用,我们的空间已经被弯曲变形了,最终的形状真的有可能具有一种双曲结构。如下图所示:左图是伦敦市的形态和路网的分布,右图是从市中心出发,市民出行的等时间线热度图。也就是说,同种颜色的区域到市中心的出行时间都一样于是,假如我们根据等时线来重新定义度规,就会得到扭曲变形后的城市地图。这种方法可以很好地展现出城市交通的自然演化对空间扭曲程度的影响。机器学习然而,尽管这套理论可以自圆其说,而且似乎能让我们看到它和理论物理的深刻联系,但是,它究竟如何指导我们的实践呢?这恐怕离不开机器学习技术!当下,机器学习大火。越来越多的机器学习、深度学习技术被用来解决人们日常生活中的问题。其中,网络嵌入(network embedding)就与我们讨论的几何与网络的主题紧密相关。这还要从诞生于2013年的一项自然语言处理技术Word2Vec说起。Word2Vec是一套将单词嵌入到高维空间中的技术,通过训练一个神经网络,得到每个单词的向量。每个单词的向量和它所出现的上下文单词有关,相似的单词会出现在相似的地方。更令人惊奇的是,这种技术不仅仅能够精确地计算单词之间的相似性,还能够得到单词之间的抽象关系。例如,一个著名的公式是:v(男人)-v(国王) ≈ v(女人)-v(王后)。其中v(x)表示x这个单词的词向量。也就是说,机器会自己学习到男人相对于国王相当于女人相对于王后。所以,除了将每个单词进行了向量表示以外,Word2Vec还可以隐式地学习到“最高权力”这种关系。后来,有人将这套东西用到了复杂网络上。为什么自然语言处理的技术能够用到复杂网络上呢?原来,网络上有个东西叫做随机游走。即我们可以放一个随机游走的粒子到网络上,然后让它沿着网络的连边随机的跳转,这样这个粒子就可以走出来一个节点的序列,例如:3→1→2→5→7→….我们便可以将这样一个序列看作一句话,每一个节点的编号看作是一个单词。于是,我们便可以将大量这样的粒子随机游走出来的节点序列扔给Word2Vec做训练,就得到了每一个节点的向量表示。这就叫网络嵌入,即将每个节点嵌入到了一个高维的空间中。于是,我们利用机器学习的方式,建立了一种网络和几何之间的关系。这一套算法叫做DeepWalk,它可以很好地表示网络,并且,相似的节点(处于相同社区的节点)都会被聚集在一起。有大量的网络嵌入算法被总结成了流行学习这样一个分支(吴令飞在研读营中做了专门的介绍)。&然而,这种方法也不是十全十美,其中一个最大的问题就是它无法区分不同层次的节点。比如,在自然语言中,“The, a”这种单词经常出现,于是它们也会被嵌入到整个网络所有节点的中心位置。然而,我们明显地知道这种单词是与其它的单词不同的。同样地,在复杂网络中,有一些核心节点仅仅是因为处在了Hub的位置才与所有的节点都相连,而实际上它们并不与其它的节点相似。但是,DeepWalk算法却并不能区分这种位于高层次的节点。因此,我们应该将双曲几何模型中的流行性考虑到机器学习算法过程中。也许,我们通过将这种层次性的因素过滤掉之后,就可以更好地将同层次的节点嵌入到合适的向量空间中,而且在这样做的过程中,我们或许可以自然地得到网络相似性空间的维度。目前所有的网络嵌入算法都是将维度作为一个外生变量引入的,我们并不能先验地确定一个具体的空间维数。但是,如果我们将节点的层次性因素去掉之后,不断提升嵌入空间的维度,就有可能得到误差曲线的一个相变,于是这个临界的维度值就应该是网络本身特征空间的维度值。统计物理这个时候,张潘在白板上推导公式的场景再一次浮现在我的眼前。他从一个统计物理学家的特殊视角统一了几大类计算问题。在他看来,所谓的极大似然估计和贝叶斯统计推断不过是统计物理系统在不同温度谱系上的特例。当我们将温度这个阀门调节到0的时候,我们就得到了极大似然估计方法;而当我们将温度调节到1的时候,就得到了贝叶斯统计推断。物理学家强大的地方就在于,一旦他们看懂了一个问题,他们就能一下子把握住该问题的本质并作出推广。具体来讲,很多计算问题的求解都存在着相变。比如,对于图的染色问题,不同的网络对应着不同的难度。于是,我们便可以利用ISING模型来对这类组合优化问题进行建模,从而将统计物理学家发明的各类巧妙的近似方法(例如cavity方法)应用其中。我猜,网络的空间嵌入也存在着类似的相变。为了求得每个节点在表示空间中的位置,我们就要去优化节点的位置变量,让它们的总误差最小。这很像ISING模型(严格说,应该是POTTS模型),其中节点是自旋,误差是能量;也许维度D就是一个序参量,对它的调节会导致相变。于是,物理学家发明的一大套高明的技巧就可以被用来分析这一现象。于是,我们看到了一条统一的道路:从量子纠缠到复杂网络,再到双曲空间、机器学习和统计物理。当我看清了整个道路,就有了一种打通了七经八脉的感觉。也许,跨学科交叉的意义就在于此,它能让你看到不同学科之间的深刻联系。结语五天时间一晃而去,尽管我们是在紧张的讨论和学习中度过的,但是每一个人都对此次研读营留下了深刻的印象。在最后的总结晚宴过程中,每一个人都表达了这次活动的效果远远超出预期的感受。再见了,集智-凯风研读营;再见了古北水镇;再见了,令人尊敬的学者们;再见了,亲爱的朋友们。&&&&&& 张江于2016年10月参考资料[1] 尤亦庄关于本次研读营课程的讲义:http://wiki.swarma.net/index.php/%94%E8%AF%BB%E8%90%A5%E4%B9%8B%E5%BC%A0%E9%87%8F%E7%BD%91%E7%BB%9C[2] 关于量子信息与量子计算:Michael Nielson &Issac L.Chuang, Quantum computation and quantum information, Cambridge University Press,2001[3] 关于张量网络:https://arxiv.org/pdf/.pdf[4] 复杂网络的双曲模型:Papadopoulos F, Kitsak M, Serrano Má, et al. Popularity versus similarity in growing networks[J]. Nature, 7): 537-540.[5] 双曲几何:http://wiki.swarma.net/index.php/%E5%8F%8C%E6%9B%B2%E7%A9%BA%E9%97%B4%E6%A8%A1%E5%9E%8B[6] Word2Vec的相关论文:T. Mikolov, J. Kopecky′, L. Burget,O. Glembek and J. Cˇ ernocky′. Neural network based language models for higlyinflective languages, In: Proc. ICASSP 2009.][7] DeepWalk算法: Bryan Perozzi, Rami Al-Rfou (2014).'DeepWalk: Online Learning of Social Representations'. KDD.[8] 算法的统计物理(张潘总结的非常好的综述材料):http://wiki.swarma.net/index.php/%94%E8%AF%BB%E8%90%A5%E4%B9%8B%E7%BB%9F%E8%AE%A1%E7%89%A9%E7%90%86%EF%BC%8C%E7%BD%91%E7%BB%9C%E4%B8%8E%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0编辑:Dandelion让苹果砸得更猛烈些吧!
发表评论:
TA的最新馆藏量子究竟是什么?
 来源: 
来源:作者:责任编辑:
量子是构成物质的基本单元,是能量的最基本携带者,不可再分割。比如,光子是光能量的最小单元,不存在“半个光子”,同理,也不存在“半个氢原子”“半个水分子”等等。量子世界中有两个基本原理:
——量子叠加,就是指一个量子系统可以处在不同量子态的叠加态上。著名的“薛定谔的猫”理论曾经形象地表述为“一只猫可以同时既是活的又是死的”。
——量子纠缠,类似孙悟空和他的分身,二者无论距离多远都“心有灵犀”。当两个微观粒子处于纠缠态,不论分离多远,对其中一个粒子的量子态做任何改变,另一个会立刻感受到,并做相应改变。
[责任编辑:]
光明网版权所有还没有开通你的开心账户?使用其他账号登录:
人脑产生意识:可能是因为量子纠缠
图片来源:quanta magazine
  一提到“量子意识”这个词语,大多数物理学家都会选择避而不谈,因为这个词语听起来好像有点“民科”,甚至让人联想宗教或者玄学。不过出人意料的是,量子效应可能真的在人类的认知过程中起到了一些作用——只要一个最新提出的假设能够得到证实。马修·费舍尔(Matthew Fisher)是一名来自加利福尼亚大学圣巴巴拉分校的物理学家,去年年末,他在《物理年鉴》(Annals of Physics)上发表了一篇让人大跌眼镜的论文。在这篇论文中,他指出大脑的工作原理很有可能与量子计算机一致,而磷原子的核自旋就充当了大脑的“量子比特”(qubits,量子信息的基本计量单位,可以以“又0又1”的状态存在)。
  若是在十年以前,费舍尔的理论一定会被许多人认为是无稽之谈。物理学家们早就受够了这样的理论——最著名的一个例子发生在1989年,数学物理学家罗杰·彭罗斯(Roger Penrose)声称意识是神经元细胞微管(构成细胞骨架的蛋白质)中量子引力效应的结果。相信这个假说的研究者寥寥无几,加州大学圣地亚哥分校的神经生物学家帕特里夏·丘吉兰(Patricia Churchland)就用一个有趣的说法委婉地表达了自己的态度:她认为,认为意识来源于量子引力效应,就跟认为意识来源于神经元突触中闪着金光的的魔法粉尘差不多(想象一下彼得潘里小精灵身上闪着金光的粉尘)。
魔法粉尘大概就是这个样子……
  费舍尔的假说必须直面与彭罗斯微管假说相同的难题:量子退相干(quantum decoherence)。在构建量子计算机的过程中,我们需要将不同的量子比特通过量子纠缠(entanglement)的方式连接起来,不幸的是,量子纠缠处于一种非常脆弱的状态,周围环境中任何一丝轻微的扰动都可能使其消失无踪:哪怕只有一个光子无意中撞上了一个量子比特,整个量子纠缠就会因为发生退相干而分崩离析,彻底摧毁整个系统的量子特性。所以,就算是在每寸空间都受到精密控制的实验室环境中,完成某些量子反应都是一件极富挑战性的课题——更不用说在我们颅骨下那团温暖、潮湿、结构复杂的粘稠物——大脑里了。想让大脑在一段相对较长的时间内维持量子相干,根本是种不切实际的幻想。
  然而在过去的十年内,越来越多的证据显示,特定的生物系统居然真的有可能应用着量子力学。以光合作用为例,研究发现,量子效应能够帮助植物将太阳能转化为供生物生长存活的化学与生物能源;候鸟的体内也有一种“量子罗盘”(quantum compass),能让候鸟利用地球的磁场确认方向;还有研究将人类的嗅觉也归结于某些量子力学的机制。
  正是在这波量子生物学的新兴浪潮中,费舍尔提出了大脑中存在量子信号处理的“疯狂”观点,他把这门与自己理论相关的学科定名为量子神经科学(quantum neuroscience)。费舍尔提出了一个极为复杂的设想,结合了核物理、量子物理、有机化学、神经科学及生物学的相关知识。尽管这些想法遭遇了大量有理有据的质疑,他的理论却并没有被这道狂流淹没——一些研究者开始注意起了这个看似荒谬的设想。“只要读过他的论文,我相信许多人都会得出这样的结论:‘嘿,这老家伙没有想象中的那么疯狂。’”加州理工学院的物理学家约翰·普瑞斯基尔(John Preskill)在听了费舍尔的一次演讲后这么写道:“他可能的确意识到了些什么。或者至少,他正在提出一些非常有意思的问题。”
  塞希尔·托达德里(Senthil Todadri)是麻省理工学院的物理学家,也是费舍尔的老友和长期合作伙伴。托达德里对费舍尔的理论持怀疑态度,不过他认为费舍尔的确重新提出了这样一个核心问题:“人脑中究竟存不存在量子处理过程?”并提供了一条可以严格检验该猜想的可能途径。“直到目前为止,主流的看法依旧认为量子信息处理根本不可能发生在大脑之中。”托达德里说道,“费舍尔找到了一个理论的漏洞,所以下一步就要看这个漏洞能否被补上了。”事实上,费舍尔的确组建了一个团队,希望能够通过实验测试彻底回答这个问题。
  寻找核自旋
  费舍尔似乎天生就注定会成为一名物理学家:他的父亲迈克尔·费舍尔(Michael E。 Fisher)是马里兰大学帕克分校的一名杰出物理学家,致力于统计物理学的研究,在学术生涯内获得了不计其数的荣誉和奖项;他的哥哥丹尼尔·费舍尔(Daniel Fisher)是斯坦福大学的应用物理学家,专攻演化动力学。马修·费舍尔也追随他们的步伐,成为了一名小有名气的物理学家。2015年,费舍尔因为他在量子相变领域的杰出贡献与其他三人一起荣获了凝聚态物理领域享誉盛名的巴克利奖(Oliver E。 Buckley Prize)。
  那么,究竟是什么原因让费舍尔把注意力从主流的物理学移开,转而探究起了这项颇具争议、甚至是臭名昭著的课题呢?毕竟,这项研究处于生物学、化学、神经科学与量子物理的交界面,处境十分尴尬。答案在意料之外、情理之中:费舍尔有一段亲身经历的抑郁症斗争史。
  直到现在,费舍尔还能清晰地回忆起1986年2月的那一天,自己在麻木和迟钝中醒来,生物钟感觉混乱,仿佛一周都没有合眼休息。“我感觉自己就像被人麻醉了。”费舍尔说道。无论他睡多久,情况都没有好转;他改变了自己的饮食习惯,积极参与运动,效果依旧微乎其微;验血结果也没有显示任何异常。这样的症状持续了整整两年,“这种感受到底有多痛苦呢?在我清醒的每时每刻每分每秒,偏头痛的痛觉都蔓延到了我身体的每一个细胞。”这种痛苦是如此令人难以忍受,就算他第一个女儿的诞生冲淡了这层忧郁的迷雾,给了他奋斗的理由,费舍尔依旧想到了自杀。
马修·费舍尔,提出了量子效应改变大脑工作方式的一种途径
  幸而最后,一位精神病医师给他开了三环抗抑郁药,三个星期内,他的精神状况开始好转。“在此之前,我的四周像被浓雾笼罩着,根本看不到太阳;而现在这层雾气淡了些,我能看到云雾背后存在着微弱的光芒。”费舍尔这么向我们比喻。在之后短短九个月,除了一些包括高血压在内的治疗副作用依旧存在,他感觉自己获得了新生。不久后,费舍尔将治疗药物换为“百忧解”(Prozac),并一直小心控制着自己的病情和用药情况。
  费舍尔独特的亲身经历使他相信,这些抗抑郁症药物的确发挥了作用,不过让他感到吃惊的是,他发现神经科学家们居然对这些药物背后的作用机制知之甚略。这引起了费舍尔的好奇心,结合自身量子力学的专业背景,他开始思考大脑中发生量子处理的可能性。五年前,他全身心地投入了这项课题,他想知道更多——结合自己的经历,费舍尔将抗抑郁药物作为研究的切入点。
  考虑到几乎所有的精神治疗药物都是复杂的小分子化合物,费舍尔把研究的第一个目标定在了结构最简单的一类药物——锂上。该药物只包含一种原子,可以说是个高度简化的科学模型,就像“真空中的球形鸡”一样(“真空中的球形鸡”出自一个讽刺理论物理学家过度简化模型的笑话:一个养鸡场里养的鸡忽然不下单了,农场主写信给物理学家求助,物理学家做了一番计算后宣布:“我已经找到了一个解!不过,这个解只适用于真空中的球形鸡。”),比起研究“百忧解”之类的药物要容易得多。费舍尔认为“真空中的球形鸡”这个比喻格外恰当,因为锂原子的微观外型恰好就是一个球体——一层球形的电子云围绕着中心的锂原子核。他注意到市场上常见的锂处方药几乎都是Li-7,于是开始思考:锂元素的另一种更少见的同位素Li-6是否能够起到同样的药物疗效?从理论上来说,不同同位素之间只是中子数目不同,化学性质几乎相同,所以Li-7和Li-6的疗效应该是一样的。
  在费舍尔检索文献时,他发现前人已经做过一些比较Li-7和Li-6效应的实验。早在1986年,康奈尔大学的科学家就研究了这两种同位素对大鼠行为的影响(J.A。 Sechzer, K.W。 Lieberman et al。, 1986)。实验者将怀孕的大鼠分为三个不同的实验组:一组给药Li-7;一组给药Li-6;还有一组作为实验对照组。在小鼠诞生之后,给药Li-6的大鼠妈妈表现出了更强的母性行为:比起给药Li-7和对照组的大鼠母亲,它们哺乳、养育后代和打理小窝的行为都更频繁。
  这极大地勾起了费舍尔的好奇心。这两种同位素的化学性质是如此相像,由中子数数目不同所引发的质量数差异又是那么微乎其微,理应如泥牛入海般消失在体环境的汪洋之中,那么到底是什么造成了研究者观察到的行为差异呢?
  费舍尔认为这种差异的秘密很可能隐藏在原子核自旋(nuclear spin)之中。核自旋是核自旋角动量的简称,是原子的一种内在量子性质,具体数值由原子核的自旋量子数决定(质子数和中子数均为偶数的原子核,自旋量子数为0;质量数为奇数的原子核,自旋量子数为半整数;质量数为偶数,质子数与中子数为奇数的原子核,自旋量子数为整数),它影响了原子处于相干态,即不受环境影响状态的时间:核自旋越低,原子核与外加电磁场的相互作用就越弱,越不容易发生退相干。
  由于Li-7和Li-6的中子数不同,它们的核自旋角动量也就不同(自旋量子数不同)。Li-7的量子数更大,核自旋更高,根据量子力学原理,其发生退相干的速度也就越快;与此同时,Li-6却能保持更长时间的量子纠缠态。
  费舍尔找到的这两种化学物质——Li-7和Li-6,它们除了量子核自旋不同,其余的重要性质都完全相同,他发现这两种物质对于动物行为的影响差异巨大。这个发现是费舍尔无法抗拒的诱惑——它暗示着,量子处理的确有可能在认知过程中起到了功能性的作用。
  量子纠缠保卫战
  即便如此,想要在现实中验证这个有趣的猜想依旧是项令人望而生畏的研究工作。如果要使量子信息以量子比特的形式储存足够长的时间,大脑一定需要一些其他的特殊机制——比如多个量子比特间的纠缠机制,以及将这种纠缠体现到神经冲动上的化学机制。此外,在大脑中传输以量子比特形式存储的量子信息也需要一定的机制来实现。
  毫无疑问,这是一块难啃的骨头。费舍尔用了整整五年的时间,才找到了一个符合条件的候选原子——磷。磷原子是生物体内除氢原子外唯一一个自旋数为1/2的常量元素,这个核自旋比较低,因此磷能维持的相干时间也比其他候选元素更长。虽然仅凭磷原子自身不能维持稳定的量子比特,不过费舍尔发现,只要把磷和钙离子结合成簇,相干时间就能得到有效的延长。
  1975年,康奈尔大学的科学家艾伦·波斯纳(Aaron Posner)用X光衍射的方法在骨骼中观测到了一类奇怪的钙磷原子团簇,艾伦为这类原子簇画出了结构示意图:团簇结构中包含了9个钙原子与6个磷原子。之后,人们为了纪念艾伦的杰出贡献,把这个电中性的团簇命名为“波斯纳原子簇”(Posner’ s clusters,结构式Ca9(PO4)6)。2000年,学界又兴起了一波研究“波斯纳原子簇”的热潮,起因是科学家在刺激骨骼生长的人造液体环境中观测到了波斯纳原子簇的存在。随后,大量的实验证据接连表明,这类原子簇其实一直安静地“躲藏”在我们的身体之中,费舍尔不禁怀疑,波斯纳原子簇也能作为一种天然的量子比特元件,在大脑中发挥作用。
  故事的宏观图像到这里已经交代完毕,但这项工作的真正难题在于弄清反应发生的细节——为了想清楚这些,费舍尔花费了几年的时间仔细推敲反应的每一个步骤。整个反应起始于细胞中一种名为焦磷酸盐的化合物。
  如图,焦磷酸根两个磷酸根共用一个氧原子,通过共价键相互连接,每个磷酸根离子则由中心的磷原子与环绕磷原子的4个氧原子(核自旋数为零)构成。两个磷酸根离子的核自旋(都来自于磷原子)纠缠在了一起,总共能形成四种不同的搭配方式:一种单态(singlet state,总自旋为0)和三重态(triplet state,总自旋为1)。在三重态下系统只能维持微弱的量子纠缠,而单重态下的系统能够最大程度地保证量子纠缠——这对于量子计算是必不可少的先决条件。
  紧接着,生物酶打断磷原子间的化学键,将纠缠着的磷酸盐分子分为两个独立的磷酸根离子。这一过程的关键要点在于,尽管从化学意义上这两个磷酸根离子已经分开,但在量子力学的意义上,它们依旧保持着量子纠缠。费舍尔告诉我们,如果系统处于单重态,这一分离过程将会更加迅速地发生。这些分散了的离子随后依次与游离的钙离子、氧原子相结合,组装成为上文提到的“波斯纳原子簇”。由于钙离子和氧原子核自旋数都为0,这使得原子簇的整体维持着1/2的总自旋数,延长了量子的相干时间。这些原子簇保护着已经分开的纠缠量子对,使它们免受外界干扰,以维持长时间的相干状态。根据费舍尔的粗略估计,这种状态下的相干时间能够持续数小时,数天甚至数周之久。
  通过这种方法,形成量子纠缠的原子能够在大脑内分散分布,相隔一定的距离调控神经递质的释放,影响神经元细胞突触间动作电位的传递,以此参与无形的大脑运作。
  验证猜想
  量子生物学界对费舍尔的观点既好奇又谨慎。伦敦大学学院专攻量子光合作用的物理学家亚历桑德拉·奥拉亚-卡斯特罗(Alexandra Olaya-Castro)将该理论称作为“一个思虑周密的猜想。尽管当下这个猜想并未给出问题的答案,但它的确为我们踏实、逐步地验证这个假说提供了切实可行的方向。”
  来自牛津大学的化学家彼得·霍尔(Peter Hore)也对奥拉亚的观点表示赞同,他研究的是量子效应在鸟类导航系统中的应用。他表示:“费舍尔已经从理论上明确给出了参与反应的原子种类和具体的反应机制,甚至都已经清晰地指出了这些原子是如何通过那些机制影响大脑的活动,这些已经足够让我们设计实验去验证这一切了。”
  实验验证正是当今费舍尔迫切想要完成的工作。近期,他刚刚乘着休假的时间前往斯坦福大学,和当地的研究学者一起工作,试图重复1986年康奈尔大学完成的怀孕大鼠实验(关键词:Li-7,Li-6)。费舍尔坦白地承认了实验的初步结果并不是非常理想,采集到的实验数据并不能提供太多有意义的信息。不过费舍尔相信,如果再次重复实验,并使用一个更接近1986年原始实验的实验步骤来完成,他们将会得到更加确凿的实验结果。
  为了完成一系列更加深入的量子化学实验,费舍尔已经申请了更多的研究经费;他还从加州大学圣巴巴拉分校与旧金山分校东拼西凑了一小群来自不同领域的科学家作为研究的合作者。首先,他想探究磷酸钙分子是否真的能够在体内形成稳定的波斯纳原子簇;同时他也希望能够验证这些粒子中磷原子的核自旋能否维持足够长的纠缠时间。
  实际上霍尔和奥拉亚-卡斯特罗对费舍尔关于磷原子核自旋持续时间的猜想一直持怀疑态度,觉得费舍尔声称相干时间能够长达一天有点过于乐观了。“说实话,我认为这非常不现实。”奥拉亚-卡斯特罗告诉我们,“相关的生化反应发生的最长时间也就是秒量级,一天未免也太长了。”霍尔认为,费舍尔的预期已经“突破天际”了,他认为,反应时间最长充其量也只有1秒。“我并不是全盘否定他的整个观点,但我认为他有必要再寻找一种能延长相干时间的粒子,”霍尔这么评论,“我不认为波斯纳原子簇会是这个问题的答案。但对这个问题的后续研究,我依旧满怀期待。”
  也有研究者认为运用量子处理的知识去解释大脑的功能是多此一举。“越来越多的证据表明,我们可以用神经元间的互相交流来解释任何与意识相关的话题。”加拿大滑铁卢大学的神经哲学家保罗·萨迦德(Paul Thagard)在写给《新科学人》(New Scientist)的文章中这么写道。
  费舍尔猜想中的许多问题都需要更为深入的检验;费舍尔本人也希望他能够完成这些相关实验并得到问题的答案。波斯纳原子簇的结构是对称的吗?核自旋究竟以何种程度孤立存在?
  一个更加现实的问题是,如果所有的这些实验最终证实费舍尔的猜想是错误的呢?也许会有那样的一天,科学界完全放弃了这种“量子意识”的观点。“我个人一直相信,如果磷原子的核自旋不能用于量子处理,那么量子力学在长期认知这一意识领域就无法有效地运作。”费舍尔说道,“所以哪怕仅是排除这种可能,也有很大的科学意义。很多时候科学需要的并不仅是阳性结果——阴性结果也同样重要。”
本转帖分类:
&&上一帖:
下一帖:&&
(%)点击发表你的观点
02-03 20:1802-04 00:0602-04 00:0602-04 01:3102-04 08:4002-04 08:4502-04 09:3202-04 10:0002-04 10:3202-04 11:16
热门转帖:
最新专题:
&2016 开心网}

我要回帖

更多关于 量子纠缠效应 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信