"等差分纬线多等积圆锥投影影"是什么意思

你也许看过楼下这篇,但地图真不是吐槽那么简单
我的图书馆
你也许看过楼下这篇,但地图真不是吐槽那么简单
【近日,一篇题为《我们看到的地图一直都错得离谱……》的文章在朋友圈里莫名流行起来,里面列举了横麦氏地图的种种“谬误”。小编知道,其实地图册里最常见的世界地图并非横麦氏地图,而是这样的:
但有人指出:“等差分纬线多圆锥投影是一种任意投影,所以也是没法儿保障等积的……”
投影原来这么复杂!请看来自密歇根大学地球和环境科学系的守望之夏同学的详细解读。本文原载知乎,作者授权观察者网转载。原文链接:】
地球是一个3维的球体(并不准确但暂且管它叫球体吧),而地图是一个2维的平面。把3维球体的表面转换到2维的平面的过程叫做投影。投影的种类有很多种,每一个种类都有自己的数学规则。在投影的过程中。因为维度的改变,投影过程中,图形的形变扭曲是无法避免的。因此,在世界地图上,面积、形状、方向和距离的准确性无法全面顾及。
有些人感觉俄罗斯的面积和非洲一样大,应该是看到了麦卡托投影。在这种投影里,俄罗斯显得相当巨大,是大于非洲的。而格林兰岛则是和非洲显得差不多大。我们就从麦卡托投影说起。
麦卡托投影(Mercator Projection)是在绘制世界地图的时候常用的投影之一。它的效果图如下:
麦卡托投影是圆柱投影的一种,是由地理学家麦卡托于16世纪发明的。和所有其它的圆柱投影一样,麦卡托投影的世界地图中,地球纬线是左右方向平行的,长度一样,覆盖整个地图的画幅;而经线是上下方向平行,垂直于纬线。然而在现实世界里,这显然是不对的:如果你拿来一个地球仪仔细观察,就能发现地球的纬线虽然是平行的,但长度却不一样:赤道最长,越往两级方向越短。而经线虽然都是一样长的,但它们并不平行,而是在南极和北极交汇成点。
那么,麦卡托为什么要对地球作这样的改变呢?我们首先来看麦卡托投影这种圆柱投影是怎么操作的。如图:
把一张纸(平面)以如图所示的方式包住地球仪,形成一个圆柱体。地球仪的赤道和纸面相切。假设地球仪表面透明,且它的球心有光源,那么地球仪表面的大陆轮廓就被投影到了纸面上。用笔在纸面上记录下轮廓后,将纸面展开,就得到了麦卡托投影的世界地图。这样的投影,真实地记录下了大陆和岛屿的轮廓形状。在赤道上,由于地球仪和纸面相切,因此面积和方向也是完全真实的。然而,在往两极方向,我们可以明显看出,大陆图案的面积发生了形变。比如下图:
南北方向上,地球表面的真实面积如红色区域所示,然而投影到纸面以后,扩大成了蓝色的区域。而对于南极点和北极点来说,通过它们的光线与纸面是平行的,因此它们被无限形变,从两个点变成了两条直线(也就是麦卡托投影的世界地图的上下两条边界)。
从数学的角度,我们也可以解释这种形变。以北纬60度为例,如图所示:
R是赤道半径,r是北纬六十度纬线的半径。r/R=sin (90-60)度=1/2,周长=2*pi*半径,因此赤道的半径是北纬六十度的2倍。然而,在麦卡托投影的世界地图里,北纬六十度和赤道是一样长的。因此为了保持大陆的形状,在北纬六十度,地图的南北方向也被拉长了2倍。这样,大陆的形状被完美地记录了下来,但是面积就无法顾全了。
越往北极走,真实的纬线越短,因此画在地图上以后,南北方向就需要拉长得更多。形变也就越大。
一般来说,麦卡托投影的地图在南纬15度到北纬15度区间内的面积,可信度还是比较高的。中纬度地区有一定的面积形变。高纬度地区的面积变化很大。俄罗斯、加拿大和格林兰的纬度都很高,中国和美国的纬度适中,而非洲、东南亚和墨西哥的纬度很低。
由此,麦卡托地图上的格林兰岛看起来和非洲差不多大,但实际上它只有非洲的1/12左右。加拿大和俄罗斯本来面积就不小,再加上纬度高,因此在麦卡托投影的地图上,这两个国家显得无比的大。美国的本土48个州在中纬度,形变比较适中,然而它最大的州阿拉斯加在高纬度地区,因此也显得十分巨大。很多美国中小学的老师都提议,教材里要尽量少用麦卡托投影的地图,因为这种地图经常误导小朋友,让他们以为阿拉斯加真的如此巨大。
说到麦卡托投影,就不得不提一个常见的误区:地图上两点之间最短的路径不一定是连接它们的直线段。比如,经常可以看到,从英国伦敦飞到美国西雅图的民航航线是这样的:
弧线是航班路线。很多人以为选择这条弧线而不是直线是因为天气因素或者别的什么因素。但事实上,图中这条弧线才是两座城市间的最近距离。看看地球仪,或者换一种投影的地图,就一目了然了。
地图投影远不止麦卡托投影这一种。麦卡托投影是圆柱投影(Cylindrical Projection)的一种。圆柱投影的制作方法大同小异,但是如果基准线的选择不同,那做出来的地图效果就大不一样。
前面说过,麦卡托投影的基准线是赤道。而横向麦卡托投影(Transverse Mercator Projection)的基准线则是一对形成大圆的经线(完全相对的两条经线)。如图所示:
这样一来,被选中的两条组成大圆的经线(包括两个极点)在地图上就成了直直的一条基准线。纬线则围绕着两个极点形成了两组被拉长的同心圆。赤道被切成3段,分别位于地图中央,上沿和下沿。比如,一幅以本初子午线所在的大圆为基准的横向麦卡托投影,画出来是这样子的(其中每一个红色圆圈所代表的区域,在真实世界中是面积一样大的):
这幅地图中,基准线附近的非洲、欧洲和南极洲的形状和相对大小保持得不错,但离基准线较远的东亚和美洲则悲剧了。因此选择基准线很重要。在采用横向麦卡托投影的时候,世界各地各国都会采用不同的基准线,这也就形成了一套制图领域很重要的UTM系统(全球横向麦卡托投影系统)。
当然,还有的圆柱投影的地图却有不止一条基准线。比如下图:
这种是利用割线投影,有两条基准线。如果基准线选择得恰当,就能有效地降低地图重要部分的面积变形。
除了圆柱投影以外,按照制作方法,还有圆锥投影(Conical Projection)和方位角投影(Azimuthal Projection)等大类。圆锥投影多数情况下是给像中国和美国这些中纬度的国家使用的。它的原理和圆柱投影很类似。但是,圆柱投影一般是用一张矩形的纸来卷成一个圆柱形,进行投影。而圆锥投影一般是采用扇形的纸张。它也可以选用1条基准线(相切)或2条基准线(相割)。它的原理如下图,可以自己体会一下:
为什么它适合像中国或美国这样的中纬度国家,以及它有什么缺点,想必已经一目了然了吧。这种地图一般只画出基准线所在半球,因为另一个半球的形变会相当大。
方位角投影有时也叫做平面投影(Planar Projection)一般用于高纬度、两极的地图或导航地图,它们也有不少种类,原理如下:
最著名的一个方位角投影的地图,估计就是联合国的旗帜上那个了。联合国旗帜上的地图的投影是方位角投影中的一种,叫做球极平面投影(Stereographic Projection)。
除了按照制作方法分类,投影还可以按照绘制出的地图的效果分类。
保持角度关系不变:
根据投影效果,第一种投影的大类是等角度投影(Conformal Projection)。
在一张等角度投影的地图上,任意一点的所有方向的比例是相同的。地球仪上两条垂直的线,到了等角度投影的地图上,也是垂直的。前面说的麦卡托投影按照这种分类方法就是等角度投影的一种,它保持了经纬线之间的九十度交角,从而保证了大陆和岛屿轮廓形状的准确。球极平面投影也是一种等角度投影,它保持了纬线之间的平行关系和经线的放射关系。
除了这两种投影以外,兰伯特等角投影(Lambert Conformal Projection)也是一种常用的等角度投影。它是一种圆锥投影,选用两条基准线,制作过程中保证了地图上有效范围内的任意两点之间的相对方向的准确性。但是距离基准线越远,形状和面积的变化就越大。前面说过,圆锥投影对中纬度地区的国家比较适用。中国的很多地图就是采用的兰伯特等角投影。其中,每个省份的分省地图,选择的两条基准线都不一样,这样才能做到在保证角度的同时,形变量最小。兰伯特等角投影的效果如下:
保持面积关系不变:
第二大类的地图投影可以保持面积,叫做等面积投影(Equal Area Projection)。等面积投影中,比较出名的是摩尔威德投影(Mollweide Projection)、阿尔伯斯等面积投影(Albers Equal-area Conic Projection)和兰伯特等面积投影(Lambert Equal-Area Projection)。
摩尔威德投影是德国数学家摩尔威德创造的。它是一种伪圆柱投影,和圆柱投影有相似之处,但又用数学方法进行了优化。这种投影方法保持了面积的准确性,也在较大的程度上控制了形状的形变量。它选择一条经线最作为基准,然后把这条经线向东和向西各90度的两条组成大圆的经线在地图上画成一个圆,效果如图所示:
由图可知俄罗斯、非洲和格林兰岛真正的面积关系。
阿尔伯斯等面积投影是一种圆锥投影。虽然用它画世界地图比较少见,但是美国人经常用它来画美国地图,特别是一些以郡或州为单位的专题地图,比如行政区划、投票形势、收入水平分布等,对面积比例要求高,但对轮廓形状要求并不高的图。这样,每个郡或每个州的面积是如实的,能让看图的人更好地看清形势。它的效果如下,可以看到这种投影下的俄罗斯、非洲和格林兰岛的面积关系:
从这里也可以看到,格林兰岛其实很小,俄罗斯的面积和北非地区差不多。
有人可能觉得阿尔伯特投影和前面看到的兰伯特等角投影没什么区别。对于美国和中国的地图来说,如果基准线选择恰当,这两种投影的区别确实很小。但是总体来说,在形状和面积两个方面,兰伯特等角投影更优先满足前者,而阿尔伯特投影更优先满足后者。
兰伯特等面积投影(注意不要和兰伯特等角投影弄混了)是一种等面积的平面投影,它不仅可以精确记录面积,也能不改变方向,一般用于绘制精度要求较高的地质图或导航图。这种投影一般不会把整个世界划在同一张图上,因为地图外围的区域形变会比较大(外围会在远离基准点的方向压缩,导致轮廓变得很扁)。它一般只包括某个半球、某个大陆甚至某个区域。大家感受下这种投影下的俄罗斯、非洲和格林兰岛(北极点为基准点):
保持两点间距离不变:
还有一种投影的大类叫做等距离投影(Equidistant Projection)。顾名思义,等距离投影是为了保持地图上两点之间的距离的准确。然而,等距离投影的地图上,并非任意两点之间的距离都是准确的,而是在某一个方向上的任意两点间距离保持准确(例如东西方向、南北方向或某个角度的方向),或者以某个点为基准,其它点到它的距离保持准确。
等距离投影中,最有名的一种叫做等距离圆柱投影(Equidistant Cylindrical Projection)。它是公认的所有地图投影里,数学变换最简单的一种。它看起来和麦卡托投影相似,实际不然:麦卡托投影在高纬度地区为了保持形状的准确而将纬线之间的距离拉长;等距离圆锥投影的所有相邻经线和纬线之间的距离都是一样的。因此,在南北方向上,地图上任意两点的距离是保持精确的。这种地图缺点很多,既不保持形状的准确,也不保证面积的准确。但因为它制作简单,因此很多时候它被用作索引地图(例如世界各国列表)或示意地图(例如时区、货币分布、国际组织成员分布等地图)的投影。这是这种地图的效果:
除了上述的投影方式外,还有一些其它重要的世界地图投影。
按照效果划分,以上这三类投影是最常见的投影类型。但是在常见的世界地图中,其实还有其它的一些投影种类。例如,题主提到有时候看到俄罗斯被画得比较扁。这种情况下,估计题主是看到了用一种叫“空投影”(Plate Carree)的方法制作的地图,效果如下:
还有一种比较经典的世界地图投影叫做罗宾逊投影(Robinson Projection)。前面一直在讨论,在把3维的地球转化为2维的地图的过程中,面积、形状、角度、距离等方面的精确度不能个个都保全。于是,制图学家们开始寻找有没有折中方案,让这几方面的变形程度尽可能最小化。罗宾逊投影就是这些尝试的其中一个结果。它的效果如下:
密歇根大学地球和环境科学系
来源:知乎 | 责任编辑:陈佳静
发表评论:
馆藏&37101
TA的最新馆藏[转]&[转]&18963人阅读
地理坐标系、大地坐标系与地图投影与重投影详解
首先简单介绍一下地理坐标系、大地坐标系以及地图投影的概念:
地理坐标系:为球面坐标。 参考平面地是椭球面,坐标单位:经纬度;投影坐标系:为平面坐标。参考平面地是水平面,坐标单位:米、千米等;地理坐标转换到投影坐标的过程可理解为投影。(投影:将不规则的地球曲面转换为平面)
从以上三个概念相应到可以涉及到三个问题:
地理坐标系的定义,即参考椭球面的标准,地球是一个不规则的球形,因此若用经纬度去定义地球上的位置,一定会对地球做了相应的抽象。投影坐标系的定义,在小范围内可以认为大地是平面的,而整体上来说地球是球形的,因此大地坐标对于不同的地区肯定是不一样的。一个坐标系肯定会涉及到坐标原点、坐标轴的位置,这也是大地坐标系需要考虑的问题。从地理坐标到投影坐标是将不规则的球面展开为平面的过程,因此也是一个将曲面拉平的过程。从生活经验中可以看出这是一个无法精确处理的问题(例如,在剥桔子的时候,如果不破坏橘子皮是无法从原来的“曲面”展开为平面的),这边涉及到了投影方法的问题
针对上面三个问题,本文将一一介绍。
对不规则的抽象——地球空间模型
地球的自然表面是崎岖不平的,在地理课本上我们会看到对地球形状的描述:地球是一个两极稍扁,赤道略鼓的不规则球体。&
不难看出在地球的自然状态下其表面并不是连续不断的,高山、悬崖的存在,使得地球表面存在无数的凸起和凹陷,因此,对地球表面的第一层抽象,大地水准面即得到了一个连续、闭合的地球表面。大地水准面的定义是:假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。它是重力等位面。&
在大地水准面的基础上可以建立地球椭球模型。大地水准面虽然十分复杂,但从整体来看,起伏是微小的,且形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体称为地球椭球体。其表面是一个规则数学表面,可用数学公式表达,所以在测量和制图中用它替代地球的自然表面。地球形体的二级逼近。&
地球椭球体有3个参数,长半轴,短半轴和扁率。可以想象地球椭球体就是一个没有那么扁长的橄榄球的形状。&
下面展示了一些常用的参考椭球体。我国1952年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体。 1978年我国决定采用新椭球体GRS(1975),并以此建立了我国新的、独立的大地坐标系,对应ArcGIS里面的Xian_1980椭球体。从1980年开始采用新椭球体GRS(1980),这个椭球体参数与ArcGIS中的CGCS2000椭球体相同。&
地理坐标系(大地坐标系)
有了对地球的抽象——参考椭球体就可以建立地理坐标系了,但是这里存在一个问题,参考椭球体是对地球的抽象,因此其并不能去地球表面完全重合,在设置参考椭球体的时候必然会出现有的地方贴近的好(参考椭球体与地球表面位置接近),有地地方贴近的不好的问题,因此这里还需要一个大地基准面来控制参考椭球和地球的相对位置。&
有以下两类基准面:
地心基准面:由卫星数据得到,使用地球的质心作为原点,使用最广泛的是 WGS 1984。
区域基准面:特定区域内与地球表面吻合,大地原点是参考椭球与大地水准面相切的点,例如Beijing54、Xian80。&
每个国家或地区均有各自的大地基准面。我们通常称谓的Beijing54、Xian80坐标系实际上指的是我国的两个大地基准面。相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。&
椭球体与大地基准面之间的关系是一对多的关系。因为基准面是在椭球体的基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。&
在目前的GIS商用软件中,大地基准面都通过当地基准面向WGS84的转换7参数来定义,即:
三个平移参数ΔX、ΔY、ΔZ表示两坐标原点的平移值。
三个旋转参数εx、εy、εz表示当地坐标系旋转至与地心坐标系平行时,分别绕Xt、Yt、Zt的旋转角。最后是比例校正因子,用于调整椭球大小。
Beijing54、Xian80相对WGS84的转换参数至今也没有公开,实际工作中可利用工作区内已知的北京54或西安80坐标控制点进行与WGS84坐标值的转换,在只有一个已知控制点的情况下(往往如此),用已知点的北京54与WGS84坐标之差作为平移参数,当工作区范围不大时,如青岛市(10654平方公里),精度也足够了。&
有了参考椭球和大地基准面两个因素就可以建立地理坐标系了。地理坐标系(大地坐标系)是大地测量中以参考椭球面为基准面建立起来的坐标系。地面点的位置用经度、纬度、和大地高度表示。地理坐标系在GIS软件中的定义如下所示:&
Abbreviation:&
Angular Unit: Degree (0.943299)&
Prime Meridian(起始经度): Greenwich (0.000000)&
Datum(大地基准面): D_Beijing_1954&
Spheroid(参考椭球体): Krasovsky_1940&
Semimajor Axis: 000&
Semiminor Axis: 000&
Inverse Flattening: 298.010000
大地坐标系可分为参心大地坐标系和地心大地坐标系。
参心大地坐标系:指经过定位与定向后,地球椭球的中心不与地球质心重合而是接近地球质心。区域性大地坐标系。是我国基本测图和常规大地测量的基础。如Beijing54、Xian80。地心大地坐标系:指经过定位与定向后,地球椭球的中心与地球质心重合。如CGCS2000、WGS84。
因此参心大地坐标系和地心大地坐标系的区别也就在于大地基准面的选择了。&
到这里我们已经介绍了地理坐标系上经纬度的来源了,还需要考虑的是高程信息的标准化。&
高程控制网的建立,必须规定一个统一的高程基准面。我国利用青岛验潮站年的观测记录,确定黄海平均海水面为全国统一的高程基准面,并在青岛观象山埋设了永久性的水准原点。以黄海平均海水面建立起来的高程控制系统,统称“1956年黄海高程系”。&
1987年,因多年观测资料显示,黄海平均海平面发生了微小的变化,由原来的72.289m变为72.260m,国家决定启用新的高程基准面,即“1985年国家高程基准”。高程控制点的高程也发生微小的变化,但对已成图上的等高线的影响则可忽略不计。&
国家高程控制网是确定地貌地物海拔高程的坐标系统。按控制等级和施测精度分为一、二、三、四等网。目前提供使用的1985国家高程系统共有水准点成果114041个,水准路线长度为公里。
曲面变平面——投影的作用
将地球椭球面上的点映射到平面上的方法,称为地图投影。&
为什么要进行投影?
地理坐标为球面坐标,不方便进行距离、方位、面积等参数的量算。地球椭球体为不可展曲面。地图为平面,符合视觉心理,并易于进行距离、方位、面积等量算和各种空间分析。
地球椭球表面是一种不可能展开的曲面,要把这样一个曲面表现到平面上,就会发生裂隙或褶皱。在投影面上,可运用经纬线的“拉伸”或“压缩”(通过数学手段)来加以避免,以便形成一幅完整的地图。但不可避免会产生变形。&
地图投影的变形通常有:长度变形、面积变形和角度变形。在实际应用中,根据使用地图的目的,限定某种变形。
按变形性质分类:
等角投影:角度变形为零(Mercator)等积投影:面积变形为零(Albers)任意投影:长度、角度和面积都存在变形&
其中,各种变形相互联系相互影响:等积与等角互斥,等积投影角度变形大,等角投影面积变形大。
从投影面类型划分:
横圆柱投影:投影面为横圆柱圆锥投影:投影面为圆锥方位投影:投影面为平面
从投影面与地球位置关系划分为:
正轴投影:投影面中心轴与地轴相互重合斜轴投影:投影面中心轴与地轴斜向相交横轴投影:投影面中心轴与地轴相互垂直相切投影:投影面与椭球体相切相割投影:投影面与椭球体相割
选择地图投影时,主要考虑因素
制图区域的范围、形状和地理位置(主要因素)地图的用途、出版方式及其他特殊要求
投影选择实例
世界地图,主要采用正圆柱、伪圆柱和多圆锥投影。在编绘世界航线图、世界交通图与世界时区图时也采用墨卡托投影。中国出版的世界地图多采用等差分纬线多圆锥投影 。对于半球地图,东、西半球图常选用横轴方位投影;南、北半球图常选用正轴方位投影;水、陆半球图一般选用斜轴方位投影。在东西延伸的中纬度地区,一般采用正轴圆锥投影,如中国与美国。在南北方向延伸的地区,一般采用横轴圆柱投影或多圆锥投影,如智利与阿根廷 。
投影参数:
概念:投影面与参考椭球的切线或割线。分为标准纬线与标准经线。&
特点:没有变形,也称主比例尺。中心线&
概念:是指中央经线(原点经线)与中央纬线(原点纬线),用来定义图投影的中心或者原点。&
特点:一般会有变形。
我国常用的投影方式&
我国基本比例尺地形图(1:100万、1:50万、1:25万、1:10万、1:5万、1:2.5万、1:1万、1:5000)除1:100万以外均采用高斯-克吕格Gauss-Kruger投影(横轴等角切圆柱投影,又叫横轴墨卡托Transverse Mercator投影)为地理基础。&
1:100万地形图采用兰伯特Lambert投影(正轴等角割圆锥投影),其分幅原则与国际地理学会规定的全球统一使用的国际百万分之一地图投影保持一致。&
海上小于50万的地形图多用墨卡托Mercator投影(正轴等角圆柱投影)。&
我国大部份省区图以及大多数这一比例尺的地图也多采用Lambert投影和属于同一投影系统的Albers投影(正轴等积割圆锥投影)。&
高斯-克吕格Gauss-Kruger投影(横轴等角切圆柱投影)
我国规定1:1万、1:2.5万、1:5万、1:10万、1:25万、1:50万比例尺的地形图均采用高斯克吕格投影。该投影在英美等国家被称为横轴墨卡托投影
横轴等角切圆柱投影&
– 离开中央子午线越远,变形越大&
– 赤道是直线,离开赤道的纬线是弧线,凸向赤道&
– 没有角度变形&
– 长度和面积变形很小北京54和西安80投影坐标系的投影方式高斯投影特点:&
– 中央子午线长度变形比为1&
– 在同一条经线上,长度变形随纬度的降低而增大,在赤道处为最大&
– 在同一条纬线上,长度变形随经差的增加而增大,且增大速度较快&
– 在6?带范围内,长度最大变形不超过0.14%通过分带控制变形:&
– 6°分带: 用于1:2.5万 ~1:50万比例尺地图&
起始于初子午线(格林威治),按经差6度为一个投影带自西向东划分,全球共分60个投影带。我国范围可分成11个6度带。&
– 3°分带:用于大于1:1万比例尺地图&
始于东经1°30′,按经差3度为一个投影带自西向东划分,全球共分120个投影带。我国范围可分成22个三度带。&
– 坐标系原点为每个投影带的中央经线与赤道交点
为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号。&
兰伯特Lambert投影(正轴等角割圆锥投影)
适用于小于1:100万(包括1:100万)的地图。最适用于中纬度的一种投影。它类似于Albers投影,不同之处在于其描绘形状比描绘面积更准确。
中国地图的中央经线常位于东经105度,两条标准纬线分别为北纬25度和北纬47度。各省的参数可根据地理位置和轮廓形状初步加以判定。例如甘肃省的参数为:中央经线为东经101度,两条标准纬线分别为北纬34度和41度。
投影方法:
圆锥投影通常基于两条标准纬线,从而使其成为割投影。超过标准纬线的纬度间距将增加。这是唯一常用的将两极表示为单个点的圆锥投影。也可使用单条标准纬线和比例尺因子定义。如果比例尺因子不等于1.0,投影实际上将变成割投影。
阿伯斯Albers投影(正轴等积割圆锥投影)
也称“双标准纬线等积圆锥投影”,为阿伯斯(Albers)拟定。投影区域面积保持与实地相等。最适合于东西方向分布的大陆板块,不适合南北方向分布的大陆板块。在处理显示400万、100万的全国数据时为了保持等面积特性,经常采用Albers投影。
墨卡托Mercator投影(正轴等角圆柱投影)
由墨卡托于1569年专门为航海目的设计的。设计思想是令一个与地轴方向一致的圆柱切于或割于地球,将球面上的经纬网按等角条件投影于圆柱表面上,然后将圆柱面沿一条母线剪开展成平面。广泛应用于航海,航空的重要投影。
投影坐标系
地图投影是将地图从球面(大地基准面)转换到平面的数学变换。由此确定的坐标系一般称为投影坐标系。因此,投影坐标系需要两组参数确定,一组为大地坐标系,另一组为投影参数。
根据以上介绍,我们可以知道当考虑两幅遥感影像、矢量地图等的坐标信息时,我们需要考虑其所在的投影坐标系。若两投影坐标系不相同则需要进行重投影变换,这里可能涉及到一下几种类型的重投影变换:
不同投影方式之间的变换。即两投影坐标系具有相同的参考椭球和大地基准面,如都是北京54地理坐标系下,但是是通过不同的投影方式得到的;不同大地基准面的变换。此时两坐标系采用了相同的参考椭球但具有不同的大地基准面,则得到的经纬度坐标是不具备比较意义的,因此需要进行重投影变换。不同参考椭球的变换。
如果在同一个椭球基准面下的转换就是严密的转换,如果在同一个椭球体不同基准面的转换是不严密的,不同椭球体之间的转换是不严密的,这就需要用到七参数、三参数等方法。需要两个不同坐标系统下公共点坐标求得系数。例如北京54和WG4-84坐标下的同一点的经纬度或者是经过投影后的平面坐标也是不同的。那么影像投影主要分为哪些步骤呢?说白了,就三个步骤,第一,坐标转换;第二,影像的重采样,最后就是写入到新文件中。
本文简介了地理坐标系统的相关概念,只有弄清楚了这些基础知识,才能在工作学习中遇到问题时,正确的考虑是否需要对地图信息进行重投影变换。本文不涉及代码部分的介绍,后面将会作专门的博客进行相关说明。
参考资料:&
参考知识库
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
访问:169302次
积分:2283
积分:2283
排名:第13390名
原创:77篇
评论:27条
(2)(1)(19)(8)(28)(3)(2)(1)(1)(3)(3)(1)(5)(1)(4)(1)(1)}

我要回帖

更多关于 多圆锥投影 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信