双向晶闸管管整流装置正常工作时满足的条件?

第2章 交流-直流变换电路习题93
上亿文档资料,等你来发现
第2章 交流-直流变换电路习题93
一、填空题;2-1、从晶闸管开始承受正向电压起到晶闸管导通之;控制角、α;2-2、单相全波可控整流电路中,晶闸管承受的最大;(电源相电压为U2)晶闸管承受的最大反向电压为;2-3、三相半波可控整流电路,输出平均电压波形脉;150,300,三相桥式全控整流桥,三相半波可控;2-4、要使三相全控桥式整流电路正常工作,对晶闸;2-5、三相桥式全控整流电路是由一组共
一、填空题2-1、从晶闸管开始承受正向电压起到晶闸管导通之间的电角度称为表示。控制角、α。2-2、单相全波可控整流电路中,晶闸管承受的最大反向电压为。三相半波可控整流电路中,(电源相电压为U2)
晶闸管承受的最大反向电压为
。2、2;2-3、三相半波可控整流电路,输出平均电压波形脉动频率为HZ;而三相全控桥整流电路,输出平均电压波形脉动频率为
HZ;这说明
电路的纹波系数比
电路要小。150,300,三相桥式全控整流桥,三相半波可控流电路,2-4、要使三相全控桥式整流电路正常工作,对晶闸管触发方法有两种,一是用触发; 二是用
大于60o小于120o的宽脉冲,脉冲前沿相差60o的双窄脉冲,2-5、三相桥式全控整流电路是由一组共极三只晶闸管和一组共极的三只晶闸管串联后构成的,晶闸管的换相是在同一组内的元件进行的。每隔
换一次相,在电流连续时每只晶闸管要使电路工作正常,必须任何时刻要有
只晶闸管同时导通,,一个是共
极的,导通
度。另一个是共
极的元件,且要求不是
的两个元件。阴;阳;60度;120;两;阴;阳;不在同一桥臂上;2-6、当晶闸管可控整流的负载为大电感负载时,负载两端的直流电压平均值会是在负载的两端
减小、并接、续流二极管。2-7、工作于反电动势负载的晶闸管在每一个周期中的导通角电流的平均值
。要求管子的额定电流值要
小、脉冲、小、大。2-8、带平衡电抗器的双反星形电路,变压器绕组同时有相导电;晶闸管每隔每只晶闸管导通
度,变压器同一铁心柱上的两个绕组同名端
,所以以两绕组的电流方向也
,因此变压器的铁心不会被
两相;60;120;相反;相反;磁化; 2-9、锯齿波触发电路的主要是由、、、同步环节;锯齿波形成;脉冲形成;整形放大;强触发及输出;2-10、晶闸管整流装置的功率因数定义为交流、有功功率、视在功率。二、问答题2-1、单相半波可控整流电路,如(1)晶闸管内部短路,(2)晶闸管内部开路,在下面的坐标中画出其直流输出电压Ud和晶闸管两端电压UT的波形。 2-2、单相半波可控整流电路中,如果:
15、(1)晶闸管门极不加触发脉冲;(2)晶闸管内部短路;(3)晶闸管内部断开;试分析上述三种情况负载两端电压ud和晶闸管两端电压uT的波形。(2)负载两端电压为U2,晶闸管上的电压答:(1)负载两端电压为0,晶闸管上电压波形与U2相同;为0;(3)负载两端电压为0,晶闸管上的电压为U2。2-3、单相桥式半控整流电路,电阻性负载。当控制角α=90o时,画出:负载电压ud、晶闸管VT1电压uVT1、整流二极管VD2电压uVD2,在一周期内的电压波形图。 9、2-4、相控整流电路带电阻性负载时,负载电阻上的Ud与Id的乘积是否等于负载有功功率,为什么?带大电感负载时,负载电阻Rd上的Ud与Id的乘积是否等于负载有功功率,为什么?答:相控整流电路带电阻性负载时,负载电阻上的平均功率Pd=UdId不等于负载有功功率P=UI。因为负载上的电压、电流是非正弦波,除了直流Ud与Id外还有谐波分量U1,U2,L和I1,I2,L,负载上有功功率为P=Pd+P1+P2+L&Pd=UdId。 222相控整流电路带大电感负载时,虽然Ud存在谐波,但电流是恒定的直流,故负载电阻Rd上的Ud与Id的乘积等于负载有功功率。2-5、带电阻性负载三相半波可控整流电路,如触发脉冲左移到自然换流点之前15°处,分析电路工作情况,画出触发脉冲宽度分别为10°和15°时负载两端的电压ud波形。答:三相半波可控整流电路触发脉冲的的最早触发时刻在自然换流点,如触发脉冲左移到自然换流点之前15°处,触发脉冲宽度为10°时,不能触发晶闸管,ud=0。触发脉冲宽度为15°时,能触发晶闸管,其波形图相当于α=0°时的波形。2-6、请利用六块锯齿波同步触发电路的X、Y控制端,来组成六路互相相差60°的双窄脉冲触发系统图,并画出其脉冲输出波形的相互关系图。 答:它们在相位上差多少度?答:相差180°
2-7、三相半波整流电路的共阴极接法与共阳极接法,a、b两相的自然换相点是同一点吗?如果不是,2-8、具有变压器中心抽头的单相全波可控整流电路,问该变压器还有直流磁化问题吗?试说明:①晶闸管承受的最大反向电压为22U2:②当负载是电阻或电感时,其输出电压和电流的波形与单相全控桥时相同。答:具有变压器中心抽头的单相全波可控整流电路的变压器没有直流磁化的问题。因为在单相全波可控整流电路变压器二次侧绕组中,正负半周内上下绕组内电流的方向相反,波形对称,其一个周期内的平均电流为零,故不会有直流磁化的问题。以下分析晶闸管承受的最大反向电压及输出电压和电流波形的情况。①以晶闸管VT2为例。当VT1导通时,晶闸管VT2通过VT1与2个变压器二次绕组并联,所以VT2承受的最大电压为22U2。②当单相全波整流电路与单相全控桥式整流电路的触发角α相同时,对于电阻性负载:(0~α)期间无晶闸管导通,输出电压为0;(α~π)期间,单相全波电路中VT1导通,单相全控桥电路中VT1、VT4导通,输出电压均与电源电压u2相等;(π~π+α)期间均无晶闸管导通,输出电压为0;(π+α~2π)期间,单相全波电路中VT2导通,单相全控桥电路中VT2、VT3导通,输出电压等于?u2。对于电感负载:(α~π+α)期问,单相全波电路中VT1导通,单相全控桥电路中VT1、VT4导通,输出电压均与电源电压u2相等;(π+α~2π+α)期间,单相全波电路中VT2导通,单相全控桥电路中VT2、VT3导通,输出波形等于?u2。可见,两者的输出电压相同,加到同样的负载上时,则输出电流也相同。2-9、带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有何主要异同?答:带平衡电抗器的双反星形可控整流电路与三相桥式全控整流电路相比有以下异同点:①三相桥式电路是两组三相半波电路串联,而双反星形电路是两组三相半波电路并联,且后者需要用平衡电抗器;②当变压器二次电压有效值U2相等时,双反星形电路的整流电压平均值Ud是三相桥式电路的1/2而整流电流平均值Id是三相桥式电路的2倍。③在两种电路中,晶闸管的导通及触发脉冲的分配关系是一样的,整流电压Ud和整流电流Id的波形形状一样。2-10、三相桥式全控整流电路,其整流输出电压中含有哪些次数的谐波?其中幅值最大的是哪一次?变压器二次侧电流中含有哪些次数的谐波?其中主要的是哪几次?答:三相桥式全控整流电路的整流输出电压中含有6K(K=l、2、3……)次的谐波,其中幅值最大的是6次谐波。变压器二次侧电流中含有6K+l(K=l、2、3……)次的谐波,其中主要的是5、7次谐波。五、计算题2-1、某电阻性负载要求0~24V直流电压,最大负载电流Id=30A,如采用220V交流直接供电和由变压器降压到60V供电的单相半波相控整流电路,是否两种方案都能满足要求?试比较两种供电方案的晶闸管的导通角、额定电压、额定电流、电源侧功率因数。解:由220V交流直接供电,当α=0o时:Ud=0.45U2=0.45×220=99V由变压器降压到60V供电,当α=0o时:Ud=0.45U2=0.45×60=27V因此,只要调节α 都可以满足输出0~24V直流电压要求。(1)采用220V交流直接供电时:由Ud=0.45U21+cosα,得 2Ud=24V时,α≈121o,θ=180o?121o=59o;UT=2=311V;IT=πUd242U212[sinωt]dωt≈84A===0.8Ω R;∫2π0R30IdIT(AV)=IT84=≈54A 1.571.57取2倍安全裕量,晶闸管的额定电压、额定电流分别为622V和108A。因为单相半波相控整流电路中,IT=I2,所以电源提供有功功率 P=I2R=84×0.8=5644.8W电源提供视在功率 S=U2I2=84×220=18.58kVA 22电源侧功率因数 PF=P≈0.305 S1+cosα,得 2(2)采用变压器降压到60V供电:由Ud=0.45U2Ud=24V时,α≈39o,θ=180o?39o=141o;UT=2U2=84.4V; IT=πUd24U212[sinωt]dωt≈51.38A===0.8Ω R;∫2π0R30IdIT(AV)=IT51.38=≈32.7A 1.571.57取2倍安全裕量,晶闸管的额定电压、额定电流分别为168.8V和65.4A。变压器二次侧有功功率 P=I2R=51.38×0.8=2112W变压器二次侧视在功率 S=U2I2=60×51.38=3.08kVA电源侧功率因数 PF=22P≈0.68。 S由此可以比较两种方案的优劣。2-2、单相半波可控整流电路对电感负载供电,L=20mH,U2=100V,求当α=0°时和60°时的负载电流Id,并画出Ud与Id波形。解:α=0°时,在电源电压u2的正半周期晶闸管导通时,负载电感L储能,在晶闸管开始导通时刻,负载电流为零。在电源电压u2的负半周期,负载电感L释放能量,晶闸管继续导通。因此,在电源电压u2的一个周期里,以下方程均成立:Ldid=2U2sinωt dt考虑到初始条件:当ωt=0时id=0可解方程:id=2U21-cosωt) ωLid=ud与id的波形如下图: 12π∫2π0U2U21-cosωt)d(ωt)==22.5A ωLωL包含各类专业文献、高等教育、行业资料、各类资格考试、应用写作文书、生活休闲娱乐、外语学习资料、第2章 交流-直流变换电路习题93等内容。 
 第2章 正弦交流电路 习... 第3章 三相交流电路习题...1/2 相关文档推荐 ...电路的作用是对电能进行 传输 、 分配 和 转换 ;对电信号进 行 传递 、 ...  2.直流电源是一种能量转换电路,它将交流能量转第4章 稳压电源 一、是非题 (注:请在每小题后[ ]内用&√&表示对,用&×&表示错) 1.直流电源是一种将正弦...  题 1.3 图 2 第1章 直流电路及其分析方法习题解答 解:t=0~4ms 时, di ...(V) I= 1.18 试用电压源与电流源等效变换的方法,求题 1.18 图所示电路...  第2章单相交流电路复习练习... 第4章半导体器件复习练习题... 第5章基本放大...戴维宁定理和电源等效变换等方法分析、计算电路;掌握电路中各点的电位的 计算。...  第一章 直流电路的基础知识模拟考题_工学_高等教育_...二、判断题: 判断题: 1 、由 KVL 可知,在电路...专题推荐 第二章 正弦交流电路模拟... 第三章 ...  第10章 直流电源电路 习题解答_工学_高等教育_教育专区。章自测题、习题解答 第...)((2)直流电源是一种能量转换电路,它将交流能量转换为直流能量。 )((3)在...  第2章单相交流电路-练习复... 第3章三相交流电路-选择题... 第3章三相交流...戴维宁定理和电源等效变换等方法分析、计算电路;掌握电路中各点的电位的 计算。...  题 1.3 图 2 第1章 直流电路及其分析方法习题解答 解:t=0~4ms 时, di ...50 (V) I? 1.18 试用电压源与电流源等效变换的方法,求题 1.18 图所示...  第一章习题解答如何区分直流电磁系统和交流电磁系统?...起到中 转或变换作用;接触器触点有主触点和辅助...在电动机的控制电路中,热继电器与熔断器各起什么...晶闸管 (Thyristor)是的简称,又可称做可控硅整流器,以前被简称为可控硅;1957年美国通用电器公司开发出世界上第一晶闸管产品,并于1958年使其商业化。一种包含3个或3个以上PN结,能从断态转入通态,或由通态转入断态的双稳 晶闸管态 。它泛指所有PNPN类型的开关管,也可表示这类开关管中的任一器件。自1957年美国贝尔电话实验室将第一只晶闸管用于 领域以来,由于它的优异性能,很快受到各国重视。随着新 的出现,新工艺的采用,单只晶闸管的电流 从几安发展到几千安,耐压等级从几百伏提高到几千伏,工作频率大大提高,器件的动态参数也有很大改进。80年代普通晶闸管的耐压等级和通流能力达到3500安/6500伏, 达3000安/4500伏。随着应用领域的拓展,晶闸管正沿着高电压、大电流、快速、模块化、功率集成化、廉价的方向发展。
晶闸管 晶闸管是PNPN四层 结构,它有三个极:阳极, 和门极;晶闸管工作条件为:加正向电压且门极有触发电流;其派生器件有:快速晶闸管,双向晶闸管,逆导晶闸管,光控晶闸管等。它是一种大功率开关型半导体器件,在电路中用文字符号为“V”、“VT”表示(旧标准中用字母“SCR”表示)。晶闸管具有硅整流器件的特性,能在高 、大 条件下工作,且其工作过程可以控制、被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。 &
当晶闸管加上正向电压(阳极接正,阴极接负)时,若门极开路,则J1、J3结处于正偏,J2结处于反偏,其伏安特性与反向特性相似,晶闸管处于正向阻断状态。若门极对阴极而言加上一定的正向电压,则N2区向P2区注入电子,这些电子经扩散,通过P2区到达2结耗尽层(也称高阻层、阻挡层),因耗尽层电场的作用,注入电子到达N1区,形成等效晶体管 2的射极产生过剩电子。为了中和过剩电子,必将有等量空穴由P1区注入N1区。同理这些空穴可到达P2区,形成等效晶体管1的射极电流。构成晶闸管的两个晶体管,因内部载流子的输运现象而相互供给基极电。当满足两个晶体管的共基极电流放大倍数之和(α1+α2)大于或等于1时,晶闸管导通。晶闸管一旦导通,因流过的电流较大, α1、α2随电流增大,足以继续保证(α1+α2)≥1。这时,即使门极电路开路,晶闸管仍能处于导通状态。当所加正向大于或等于转折电压时,晶闸管也会导通,称为硬开通。当晶闸管加上反向电压时,因J1、J3结反偏,器件呈阻断状态。晶闸管T在工作过程中,它的阳极A和阴极K与电源和负载连接,组成晶闸管的主电路,晶闸管的门极G和K与控制晶闸管的装置连接,组成晶闸管的控制电路。
晶闸管以高阻单晶硅为基本材料制成。单片直径可达数十,采用平面制成PN结,利用电子与空穴两种载流子再生导电机构的工作,允许P1N1P2各层有较大厚度。硅片总厚度达几百微米,故晶闸管耐高电压,通流能力大。制作中采用特殊寿命控制技术。与离子管相比,它的开关速度更快,功耗低,体积小,节能显著。    晶闸管按其使用要求及它本身的性能特点,可以分为逆阻晶闸管、快速晶闸管、逆导晶闸管、双向晶闸管、可关断晶闸管、、管及晶闸管模块等。晶闸管构成电子器件中引人注意的一大类,也是很有发展前途的一类。
晶闸管 晶闸管有多种分类方法。按关断、导通及控制方式分类晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。按引脚和极性分类晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 按封装形式分类晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。其中,金属封装晶闸管又分为形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。 按电流容量分类晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。 按关断速度分类晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。
1. 晶闸管承受反向阳极电压时,不管门极承受何种电压,晶闸管都处于关断状态。   2. 晶闸管承受正向阳极电压时,仅在承受正向电压的情况下晶闸管才导通。   3. 晶闸管在导通情况下,只要有一定的正向阳极电压,不论门极电压如何,晶闸管保持导通,即晶闸管导通后,门极失去作用。   4. 晶闸管在导通情况下,当主回路电压(或电流)减小到接近于零时,晶闸管关断。从晶闸管的内部分析工作过程:晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图2当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。图2中每个晶体管的集电极电流同时就是另一个晶体管的。因此,两个互相复合的晶体管电路,当有足够的Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和,晶体管饱和导通。  设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:  Ia=Ic1+Ic2+Ic0 或Ia=a1Ia+a2Ik+Ic0   若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig   从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式  和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0 晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的。这样强烈的正反馈过程迅速进行。从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。晶闸管在导通后,门极已失去作用。  在晶闸管导通后,如果不断的减小电源电压或增大回路,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。  可关断晶闸管GTO(Gate Turn-Off Thyristor)亦称门控晶闸管。其主要特点为,当门极加负向触发信号时晶闸管能自行关断。
使用注意事项选用可控硅的额定电压时,应参考实际工作条件下的峰值电压的大小,并留出一定的余量。
1、选用可控硅的额定电流时,除了考虑通过元件的平均电流外,还应注意正常工作时导通角的大小、散热通风条件等因素。在工作中还应注意管壳温度不超过相应电流下的允许值。
2、使用可控硅之前,应该用万用表检查可控硅是否良好。发现有短路或断路现象时,应立即更换。
3、严禁用兆欧表(即摇表)检查元件的绝缘情况。
4、电流为5A以上的可控硅要装散热器,并且保证所规定的冷却条件。为保证散热器与可控硅管心接触良好,它们之间应涂上一薄层有机硅油或硅脂,以帮于良好的散热。
5、按规定对主电路中的可控硅采用过压及过流保护装置。
6、要防止可控硅控制极的正向过载和反向击穿。损坏原因判别当晶闸管损坏后需要检查分析其原因时,可把管芯从冷却套中取出,打开芯盒再取出芯片,观察其损坏后的痕迹,以判断是何原因。下面介绍几种常见现象分析。
1、电压击穿。晶闸管因不能承受电压而损坏,其芯片中有一个光洁的小孔,有时需用扩大镜才能看见。其原因可能是管子本身耐压下降或被电路断开时产生的高电压击穿。
2、电流损坏。电流损坏的痕迹特征是芯片被烧成一个凹坑,且粗糙,其位置在远离控制极上。
3、电流上升率损坏。其痕迹与电流损坏相同,而其位置在控制极附近或就在控制极上。
4、&边缘损坏。他发生在芯片外圆倒角处,有细小光洁小孔。用放大镜可看到倒角面上有细细金属物划痕。这是制造厂家安装不慎所造成的。它导致电压击穿。
(1)在检查大功率GTO器件时,建议在R×1档外边一节1.5V电池E′,以提高测试电压和测试电流,使GTO可靠地导通。  (2)要准确测量的关断增益βoff,必须有专用测试设备。但在业余条件下可用上述方法进行估测。由于测试条件不同,测量结果仅供参考,或作为相对比较的依据。  逆导晶闸管RCT(Reverse-Conducting Thyristir)亦称反向导通晶闸管。其特点是在的阳极与阴极之间反向并联一只二极管,使阳极与阴极的发射结均呈短路状态。由于这种特殊电路结构,使之具有耐高压、耐高温、关断时间短、通态电压低等优良性能。例如,逆导晶闸管的关断时间仅几微秒,工作频率达几十千赫,优于快速晶闸管(FSCR)。该器件适用于开关电源、UPS不间断电源中,一只RCT即可代替晶闸管和续流二极管各一只,不仅使用方便,而且能简化电路设计。  逆导晶闸管的符号、等效电路如图1(a)、(b)所示。其伏安特性见图2。由图显见,逆导晶闸管的伏安特性具有不对称性,正向特性与普通晶闸管SCR相同,而反向特性与的正向特性相同(仅坐标位置不同)。  逆导晶闸管的典型产品有(RCA)生产的S3900MF,其外形见图1(c)。它采用TO-220封装,三个引出端分别是门极G、A、K。&
晶闸管属于硅元件,硅元件的普遍特性是过载能力差,因此在使用过程中经常会发生烧坏晶闸管的现象。晶闸管烧坏都是由温度过高造成的,而温度是由晶闸管的电特性、热特性、结构特性决定的,因此保证晶闸管在研制、生产过程中的质量应从三方面入手:电特性、热特性、结构特性,而且三者是紧密相连、密不可分的,所以在研制、生产晶闸管时应充分考虑其电应力、热应力、结构应力。烧坏晶闸管的原因很多,总的说来还是三者共同作用下才致使晶闸管烧坏的,某一单独的特性下降很难造成品闸管烧坏,因此我们在生产过程中可以充分利用这个特点,就是说如果其中的某个应力达不到要求时可以采取提高其他两个应力的办法来弥补。从晶闸管的各相参数看,经常发生事故的参数有:电压、电流、dv/dt、di/dt、漏电、开通时间、关断时间等,甚至有时控制极也可烧坏。由于晶闸管各参数性能的下降或线路问题会造成晶闸管烧损,从表面看来每个参数所造成晶闸管烧损的现象是不同的,因此通过解剖烧损的晶闸管就可以判断出是由哪个参数造成晶闸管烧坏的。&一般情况下阴极表面或芯片边缘有一烧损的小黑点说明是由于电压引起的,由电压引起烧坏晶闸管的原因有两中可能,一是晶闸管电压失效,就是我们常说的降伏,电压失效分早期失效、中期失效和晚期失效。二是线路问题,线路中产生了过电压,且对晶闸管所采取的保护措施失效。电流烧坏晶闸管通常是阴极表面有较大的烧损痕迹,甚至将芯片、管壳等金属大面积溶化。由di/dt所引起的烧坏晶闸管的现象较容易判断,一般部是门极或放大门极附近烧成一小黑点。我们知道晶闸管的等效电路是由两只可控硅构成,门极所对应的可控硅做触发用,目的是当触发信号到来时将其放大,然后尽快的将主可控硅导通,然而在短时间内如果电流过大,主可控硅还没有完全导通,大的电流主要通过相当于门极的可控硅流过,而此可控硅的承载电流的能力是很小的,所以造成此可控硅烧坏,表面看就是门极或放大门极附近烧成一小黑点。至于dv/dt其本身是不会烧坏晶闸管的,只是高的dv/dt会使晶闸管误触发导通,其表面现象跟电流烧坏的现象差不多。开通时间跟di/dt的关系很密切,因此其烧坏晶闸管的现象跟di/dt烧坏晶闸管基本类似。关断时间烧坏晶闸管的现象较难分析,其特点有时象电压烧坏,有时又象电流烧坏,从实践来看象电流烧坏的时候比较多。以上分析只是从晶闸管表面的损坏程度来判断其到底是由什么参数造成的,但无论什么原因损坏都会在晶闸管上留下痕迹,这种痕迹大多是烧坏的黑色痕迹,而黑色痕迹就是金属熔化的痕迹,就是说烧坏晶闸管的最根本原因是将晶闸管芯片熔化,有的是大面积熔化,有的是小面积熔化。其实无论晶闸管的那个参数造成其烧坏,最终的结果都可以归纳为电压击穿,就是说晶闸管烧坏的最终原因都是由电压击穿造成的,其表面的烧损痕迹也是由电压击穿所引起的,那么电压击穿与晶闸管表面烧损的痕迹(小黑点或大面积熔化)有什么关系呢?1.由于品闸管的电压参数下降或线路产生的过电压超过其额定值造成其绝缘强度相对降低,因此发生启弧放电现象,而弧光的温度是非常高的,远大于芯片各金属的熔点,因此烧毁晶闸管,又由于芯片外圆边缘、芯片阴极-阳极表面之间的绝缘电压强度不是完全一致的,只有在相对绝缘电压较低的那点启弧放电,因此电压击穿表现为在芯片阴极表面或芯片的边缘有一小黑点。2.由于晶闸管的电流、dv/dt、漏电、关断时间、压降等参数下降或线路的原因造成其芯片温度过高,超过结温,造成内部金属格式发生变化,引起其绝缘电压降低,因此发生启弧放电现象,弧光产生的高温将垫片、硅片、熔化、烧毁,同时也会将外壳与芯片相连的金属熔化。由于芯片温度过高需要较长的时间,是慢慢积累起来的,因此超温的面积是较大的,烧损的面积也是较大的。3.由于di/dt、开通时间烧坏的品闸管虽然也是一小黑点,但烧坏的位置与真正的电压击穿是不同的,其烧坏的机理与上面2所述的是一样的,只是由于芯片里面的小可控硅比较小,所以形成的烧毁痕迹亦较小,实际是已经将小可控硅完全烧毁了。综上所述,无论什么原因烧坏晶闸管,最终都是由于晶闸管绝缘电压相对降低,然后启弧放电,产生高温,使晶闸管芯片金属甚至外壳金属熔化,致使晶闸管短路,损坏。
晶闸管是四层三端器件,它有J1、J2、J3三个PN结图1,可以把它中间的NP分成两部分,构成一个PNP型三极管和一个NPN型三极管的复合管图当晶闸管承受正向阳极电压时,为使晶闸管导通,必须使承受反向电压的PN结J2失去阻挡作用。图2中每个晶体管的集电极电流同时就是另一个晶体管的基极电流。因此,两个互相复合的晶体管电路,当有足够的门机电流Ig流入时,就会形成强烈的正反馈,造成两晶体管饱和导通,晶体管饱和导通。设PNP管和NPN管的集电极电流相应为Ic1和Ic2;发射极电流相应为Ia和Ik;电流放大系数相应为a1=Ic1/Ia和a2=Ic2/Ik,设流过J2结的反相漏电电流为Ic0,晶闸管的阳极电流等于两管的集电极电流和漏电流的总和:Ia=Ic1+Ic2+Ic0&或Ia=a1Ia+a2Ik+Ic0若门极电流为Ig,则晶闸管阴极电流为Ik=Ia+Ig从而可以得出晶闸管阳极电流为:I=(Ic0+Iga2)/(1-(a1+a2))(1—1)式硅PNP管和硅NPN管相应的电流放大系数a1和a2随其发射极电流的改变而急剧变化如图3所示。当晶闸管承受正向阳极电压,而门极未受电压的情况下,式(1—1)中,Ig=0,(a1+a2)很小,故晶闸管的阳极电流Ia≈Ic0&晶闸关处于正向阻断状态。当晶闸管在正向阳极电压下,从门极G流入电流Ig,由于足够大的Ig流经NPN管的发射结,从而提高起点流放大系数a2,产生足够大的极电极电流Ic2流过PNP管的发射结,并提高了PNP管的电流放大系数a1,产生更大的极电极电流Ic1流经NPN管的发射结。这样强烈的正反馈过程迅速进行。从图3,当a1和a2随发射极电流增加而(a1+a2)≈1时,式(1—1)中的分母1-(a1+a2)≈0,因此提高了晶闸管的阳极电流Ia.这时,流过晶闸管的电流完全由主回路的电压和回路电阻决定。晶闸管已处于正向导通状态。式(1—1)中,在晶闸管导通后,1-(a1+a2)≈0,即使此时门极电流Ig=0,晶闸管仍能保持原来的阳极电流Ia而继续导通。晶闸管在导通后,门极已失去作用。在晶闸管导通后,如果不断的减小电源电压或增大回路电阻,使阳极电流Ia减小到维持电流IH以下时,由于a1和a1迅速下降,当1-(a1+a2)≈0时,晶闸管恢复阻断状态。可关断晶闸管GTO(Gate&Turn-Off&Thyristor)亦称门控晶闸管。其主要特点为,当门极加负向触发信号时晶闸管能自行关断。&&晶闸管智能模块前已述及,普通晶闸管(SCR)靠门极正信号触发之后,撤掉信号亦能维持通态。欲使之关断,必须切断电源,使正向电流低于维持电流IH,或施以反向电压强近关断。这就需要增加换向电路,不仅使设备的体积重量增大,而且会降低效率,产生波形失真和噪声。可关断晶闸管克服了上述缺陷,它既保留了普通晶闸管耐压高、电流大等优点,以具有自关断能力,使用方便,是理想的高压、大电流开关器件。GTO的容量及使用寿命均超过巨型晶体管(GTR),只是工作频纺比GTR低。目前,GTO已达到3000A、4500V的容量。大功率可关断晶闸管已广泛用于斩波调速、变频调速、逆变电源等领域,显示出强大的生命力。可关断晶闸管也属于PNPN四层三端器件,其结构及等效电路和普通晶闸管相同,因此图1仅绘出GTO典型产品的外形及符号。大功率GTO大都制成模块形式。尽管GTO与SCR的触发导通原理相同,但二者的关断原理及关断方式截然不同。这是由于普通晶闸管在导通之后即外于深度饱和状态,而GTO在导通后只能达到临界饱和,所以GTO门极上加负向触发信号即可关断。GTO的一个重要参数就是关断增益,βoff,它等于阳极最大可关断电流IATM与门极最大负向电流IGM之比,有公式βoff&=IATM/IGMβoff一般为几倍至几十倍。βoff值愈大,说明门极电流对阳极电流的控制能力愈强。很显然,βoff与昌盛&的hFE参数颇有相似之处。下面分别介绍利用万用表判定GTO电极、检查GTO的触发能力和关断能力、估测关断增益βoff的方法。
判定GTO的电极将万用表拨至R×1档,测量任意两脚间的电阻,仅当黑表笔接G极,红表笔接K极时,电阻呈低阻值,对其它情况电阻值均为无穷大。由此可迅速判定G、K极,剩下的就是A极。(此处指的模拟表,电子式万用表红表笔与电池正极相连,模拟表红表笔与电池负极相连)
检查触发能力如图2(a)所示,首先将表Ⅰ的黑表笔接A极,红表笔接K极,电阻为无穷大;然后用黑表笔尖也同时接触G极,加上正向触发信号,表针向右偏转到低阻值即表明GTO已经导通;最后脱开G极,只要GTO维持通态,就说明被测管具有触发能力。
检查关断能力现采用双表法检查GTO的关断能力,如图2(b)所示,表Ⅰ的档位及接法保持不变。将表Ⅱ拨于R×10档,红表笔接G极,黑表笔接K极,施以负向触发信号,如果表Ⅰ的指针向左摆到无穷大位置,证明GTO具有关断能力。
估测关断增益βoff进行到第3步时,先不接入表Ⅱ,记下在GTO导通时表Ⅰ的正向偏转格数n1;再接上表Ⅱ强迫GTO关断,记下表Ⅱ的正向偏转格数n2。最后根据读取电流法按下式估算关断增益:βoff=IATM/IGM≈IAT/IG=K1n1/&K2n2式中K1—表Ⅰ在R×1档的电流比例系数;K2—表Ⅱ在R×10档的电流比例系数。βoff≈10×n1/&n2此式的优点是,不需要具体计算IAT、IG之值,只要读出二者所对应的表针正向偏转格数,即可迅速估测关断增益值。注意事项:(1)在检查大功率GTO器件时,建议在R×1档外边串联一节1.5V电池E′,以提高测试电压和测试电流,使GTO可靠地导通。(2)要准确测量GTO的关断增益βoff,必须有专用测试设备。但在业余条件下可用上述方法进行估测。由于测试条件不同,测量结果仅供参考,或作为相对比较的依据。
万方数据期刊论文
电力系统自动化
万方数据期刊论文
中国电机工程学报
万方数据期刊论文
为本词条添加和相关影像
互动百科的词条(含所附图片)系由网友上传,如果涉嫌侵权,请与客服联系,我们将按照法律之相关规定及时进行处理。未经许可,禁止商业网站等复制、抓取本站内容;合理使用者,请注明来源于。
登录后使用互动百科的服务,将会得到个性化的提示和帮助,还有机会和770多万专业认证智愿者沟通。
您也可以使用以下网站账号登录:
此词条还可添加&
编辑次数:34次
参与编辑人数:24位
最近更新时间: 17:40:39
贡献光荣榜
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品
扫描二维码用手机浏览词条
保存二维码可印刷到宣传品}

我要回帖

更多关于 晶闸管整流电路 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信