如图,△OAB的顶点A(2,m)B(n,1)均在已知抛物线顶点坐标y=-x²+10上,顶点O为坐标原点

如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点
练习题及答案
如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点B在第一象限内,且,sin∠OAB=。(1)若点C是点B关于x轴的对称点,求经过O、C、A三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P,使以P、O、C、A为顶点的四边形为梯形?若存在,求出点P的坐标;若不存在,请说明理由;(3)若将点O、点A分别变换为点Q(-2k ,0)、点R(5k,0)(k&1的常数),设过Q、R两点,且以QR的垂直平分线为对称轴的抛物线与y轴的交点为N,其顶点为M,记△QNM的面积为,△QNR的面积,求∶的值。
题型:解答题难度:偏难来源:四川省中考真题
所属题型:解答题
试题难度系数:偏难
答案(找答案上)
解:(1)如图,过点B作于点D,在中,∵,∴,又由勾股定理,得,∴∵点B在第一象限内,∴点B的坐标为(4,3),∴点B关于x轴对称的点C的坐标为(4,-3),设经过三点的抛物线的函数表达式为,由∴经过三点的抛物线的函数表达式为;(2)假设在(1)中的抛物线上存在点P,使以为顶点的四边形为梯形, ①∵点不是抛物线的顶点,∴过点C作直线OA的平行线与抛物线交于点P1则直线的函数表达式为y=-3,对于,令或,∴而点,在四边形中,,显然∴点是符合要求的点②若,设直线CO的函数表达式为,将点代入,得,∴直线CO的函数表达式为,于是可设直线的函数表达式为将点代入,得∴直线的函数表达式为由,即,∴ 而点,过点作轴于点E,则,在中,由勾股定理,得而,∴在四边形中,,但,∴点是符合要求的点, ③若,设直线CA的函数表达式为,将点代入,得∴直线CA的函数表达式为,∴直线的函数表达式为,由,即,∴而点,过点作轴于点F,则,在中,由勾股定理,得,而∴在四边形中,,但,∴点是符合要求的点,综上可知,在(1)中的抛物线上存在点,使以为顶点的四边形为梯形;(3)由题知,抛物线的开口可能向上,也可能向下, ①当抛物线开口向上时,则此抛物线与y轴的负半轴交于点N,可设抛物线的函数表达式为,即,如图,过点M作轴于点G∵,,∴,∴ ∴  ②当抛物线开口向下时,则此抛物线与y轴的正半轴交于点N,同理,可得,综上可知,的值为。
马上分享给同学
初中三年级数学试题“如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点”旨在考查同学们对
求二次函数的解析式及二次函数的应用、
三角形的周长和面积、
梯形,梯形的中位线、
……等知识点的掌握情况,关于数学的核心考点解析如下:
此练习题为精华试题,现在没时间做?,以后再看。
根据试题考点,只列出了部分最相关的知识点,更多知识点请访问。
考点名称:
二次函数解析式的三种形式
(1)一般式:y=ax2+bx+c(a,b,c是常数,a&0);
(2)顶点式:y=a(x-h)2+k(a,h,k是常数,a&0)
(3)交点式:y=a(x-x1)(x-x2)当抛物线与x轴有交点时,即对应二次好方程有实根x1和x2存在时,根据二次三项式的分解因式,二次函数可转化为两根式。如果没有交点,则不能这样表示。
求二次函数解析式的方法
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数应用解题技巧
(1)应用二次函数解决实际问题的一般思路:
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。
考点名称:
三角形相关计算公式:
三角形的周长:L=a+b+c
公式:L=2S/r(S是三角形的面积,r是三角形的内切圆的半径)
三角形的面积公式 S=(A*B)/2
直角三角形求第三边的公式 两边的平方和等于斜边的平方。
相关图形周长定义:
周界指封闭曲线一周的长度,通常它亦指周长(该长度的总和。周长一般用P表示。)。
周界的长度因此亦相等于图形所有边的和。
长方形的周界 = (长 + 宽)& 2,
正方形的周界 = 任何一条边 & 4,
三角形的周界 = 三条边的和,
圆形的周界 = 直径 & 圆周率(&)
若果以同一面积的三角形而言,以等边三角形的周界最短;
若果以同一面积的四边形而言,以正方形的周界最短;
若果以同一面积的五边形而言,以正五边形的周界最短;
若果以同一面积的任意多边形而言,以正圆形的周界最短。
周界只能用于二维图形(平面、曲面)上,三维图形(立体)
如柱体、锥体、反棱柱、球体、圆柱、圆锥等都不能以周界表示其边界大小,而是要用总表面面积。
总表面面积 = 该立体所有面的和
相关图形周长的计算公式:
圆周长=圆周率&直径或圆周率&2半径即&d或2&r。若圆周率以3.14计算~~2x半径&3.14
矩形周长=宽和长的和&2,即2(a+b)。(长+宽)&2
其他多边形周长=所有边长之和,即a+b+c+...+n。
正多边形周长=边长&边数,即an。&
考点名称:
梯形的定义:
梯形是有且仅有一组对边平行的凸四边形。梯形平行的两条边为&底边&,分别称为&上底&和&下底&,其间的距离为&高&,不平行的两条边为&腰&。下底与腰的夹角为&底角&,上底与腰的夹角为&顶角&。
注意:广义中,平行四边形是梯形,因为它有一对边平行。狭义中,平行四边形并不是梯形,因为它有二对边平行。
梯形的中位线:
由梯形两腰的中点连成的线段称为梯形的中位线。梯形的中位线与上底和下底都平行,长度为上底与下底的长度之和的一半。
特殊的梯形:
等腰梯形:
两腰长度相等的梯形称为等腰梯形。它具有如下性质:
两条对角线相等。
同一底上的二内角相等。
对角互补,四顶点共圆。
依据以上性质,判定一个四边形是等腰梯形可以通过以下命题:
两腰相等的梯形是等腰梯形。
两条对角线相等的梯形是等腰梯形。
同一底上的二内角相等的梯形是等腰梯形。
直角梯形:
一个底角为90&的梯形是直角梯形。由于梯形的二底边平行,因此根据同旁内角关系,直角梯形一腰上的两个底角都是90&。
注意,矩形并非直角梯形,因为它虽然有一个角为90&,但不满足梯形的判定。
梯形的高公式:
a、b为梯形的底边,a不等于b。c、d为梯形的两腰。
则梯形的高:
梯形的面积公式:
其中m为中位线的长度。
以上两个公式均适用于任何梯形。
相关练习题推荐
与“如图,在平面直角坐标系xOy中,△OAB的顶点A的坐标为(10,0),顶点”相关的知识点试题(更多试题练习--)
微信沪江中考
CopyRight & 沪江网2015如图,已知△OAB的顶点A(3,0),B(0,1),O是坐标原点.将△OAB绕点O按逆时针旋转90°得到△ODC.(1)写出C,D两点的坐标;(2)求过C,D,A三点的抛物线的解析式,并求此抛物线的顶点M的坐标;(3)在线段AB上是否存在点N,使得NA=NM?若存在,请求出点N的坐标;若不存在,请说明理由.【考点】.【专题】综合题;压轴题;开放型.【分析】(1)根据旋转的性质,可得OC=OB,OD=OA,进而可得CD两点的坐标;(2)设出解析式,并将A、C、D三点的坐标代入可得方程组,解可得解析式,进而可得M的坐标;(3)假设存在并设出其坐标,连接MB,作ME⊥y轴于E,可得ME、BE、MB的长,进而可得BA与MB的关系,即可求出N的坐标,故可作出判断.【解答】解:(1)C(-1,0),D(0,3).(2)设所求抛物线的解析式为y=ax2+bx+c(a≠0)∵A,C,D在抛物线上∴解得a=-1,b=2,c=3即y=-x2+2x+3又y=-(x-1)2+4∴M(1,4).(3)解:(法一)连接MB,作ME⊥y轴于E则ME=1,BE=4-1=3∴MB=,BA=MB即在线段AB上存在点N(0,1)(即点B)使得NA=NM.(法二)设在AB上存在点N(a,b)(0≤b≤1)使得NA=NM(即NA2=NM2)作NP⊥OA于P,NQ⊥对称轴x=1于Q则∴NA2=b2+(3-a)2=10b2NM2=(1-a)2+(4-b)2=10b2-20b+20则10b2=10b2-20b+20∴b=1故在线段AB上存在点N(0,1)(即点B)使得NA=NM.【点评】本题考查学生将二次函数的图象与解析式相结合处理问题、解决问题的能力.声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。答题: 难度:0.31真题:19组卷:3
解析质量好中差如图,已知在RT△OAB中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:OB=1:2,求A,B_百度知道
如图,已知在RT△OAB中,斜边OB在x轴的正半轴上,直角顶点A在第四象限内,S△OAB=20,OA:OB=1:2,求A,B
hiphotos.hiphotos://c.baidu如下图,S△/zhidao/wh%3D600%2C800/sign=0b18ab1d79ec54e741b8/08fe26d4c4d979cb0a46f21fabfe:2://c://c.baidu.jpg" target="_blank" title="点击查看大图" class="ikqb_img_alink"><img class="ikqb_img" src="/zhidao/wh%3D450%2C600/sign=04fc2a20ab801d0edcb27/08fe26d4c4d979cb0a46f21fabfe,OA:OB=1。<a href="http,求A,直角顶点A在第四象限内.jpg" esrc="/zhidao/pic/item/08fe26d4c4d979cb0a46f21fabfe.baidu,B两点坐标,斜边OB在x轴的正半轴上,已知在RT△OAB中
提问者采纳
OB=1,-n)则a&#178:2设OA=m则OB=2m所以面积S=m*2m÷2=20m&#178,0)设A到OB距离是n则n是三角形的高所以S=OB*n/+n&#178;=20勾股定理OB&#178;2=20n=4OA=m=√20设A(a;=m&#178;+(2m)&#178;=100所以OB=10所以B(10;=5m&#178;=m&#178;a=2所以A(2OA
我们老师说了,这道题错了,呵呵
好吧,再见了
再见??什么情况??给你我就要分别一般,哈哈。你是谁呀?我觉得你好厉害呀!什么题都会,你是大学生还是老师?还是更高的?我真的好佩服你,咱俩做个朋友吧,请加我qQ,,你就说你是“我不是他舅”,好不??
哦,最后写错了A(2,-4)但还是永别了
提问者评价
来自:求助得到的回答
其他类似问题
等待您来回答
下载知道APP
随时随地咨询
出门在外也不愁如图,如图抛物线y ax2=ax2+bx+c与x轴交于原点和点A(2,0),顶点为M(1,-1) (1)求抛物线的解析式; (2)当x - 叫阿莫西中心 - 中国网络使得骄傲马戏中心!
如图,如图抛物线y ax2=ax2+bx+c与x轴交于原点和点A(2,0),顶点为M(1,-1) (1)求抛物线的解析式; (2)当x
如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则点D的坐标为____3);②试判断四边形ADBC的形状,并说明理由.(3)试问在直线AC上是否存在一点F,使得△FBD的周长最小,若存在,请写出点F的坐标;若不存在,请说明理由.-乐乐题库
& 二次函数综合题知识点 & “如图,抛物线y=ax2+bx+c的顶点P...”习题详情
78位同学学习过此题,做题成功率69.2%
如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-√33),交x轴于A、B两点,交y轴于点C(0,-√3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则点D的坐标为(2,3);②试判断四边形ADBC的形状,并说明理由.(3)试问在直线AC上是否存在一点F,使得△FBD的周长最小,若存在,请写出点F的坐标;若不存在,请说明理由.
本题难度:一般
题型:填空题&|&来源:2007-白下区一模
分析与解答
习题“如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则...”的分析与解答如下所示:
(1)设抛物线的解析式是y=a(x-1)2-√33,把C(0,-√3)代入求出a=√33即可;(2)y=√33(x-1)2-√33=0,求出A、B的坐标,得到E(1,0),即可推出D的坐标,根据矩形的判定即可推出答案;(3)作出点B关于直线AC的对称点Bˊ,连接BˊD与直线AC交于点F.则点F是使△FBD周长最小的点.根据△BˊFC∽△DFA即可求出答案.
解:(1)设抛物线的解析式是y=a(x-1)2-√33,把C(0,-√3)代入得:a=√33,∴y=√33(x-1)2√3√33(x-1)2-√33.(2)①解:y=√33(x-1)2-√33=0,解得:x1=-1,x2=3,A(-1,0),B(3,0),∴E(1,0),∴D(2,√3),故答案为:D(2,√3).②四边形ADBC是矩形.理由:四边形ADBC是平行四边形,且∠ACB=90°,(3)答:存在.解:作出点B关于直线AC的对称点Bˊ,连接BˊD与直线AC交于点F.则点F是使△FBD周长最小的点.∵∠BˊCA=∠DAF=90°,∠BˊFC=∠DFA,∴△BˊFC∽△DFA.∴F是线段AC的中点,求得F(-12,-√32),答:存在,F的坐标是(-12,-√32).
本题主要考查对用待定系数法求二次函数的解析式,解一元二次方程,平行四边形的性质,相似三角形的性质和判定,中心对称图形等知识点的理解和掌握,综合运用这些性质进行计算是解此题的关键.
找到答案了,赞一个
如发现试题中存在任何错误,请及时纠错告诉我们,谢谢你的支持!
如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形AD...
错误类型:
习题内容残缺不全
习题有文字标点错误
习题内容结构混乱
习题对应知识点不正确
分析解答残缺不全
分析解答有文字标点错误
分析解答结构混乱
习题类型错误
错误详情:
我的名号(最多30个字):
看完解答,记得给个难度评级哦!
还有不懂的地方?快去向名师提问吧!
经过分析,习题“如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则...”主要考察你对“二次函数综合题”
等考点的理解。
因为篇幅有限,只列出部分考点,详细请访问。
二次函数综合题
(1)二次函数图象与其他函数图象相结合问题解决此类问题时,先根据给定的函数或函数图象判断出系数的符号,然后判断新的函数关系式中系数的符号,再根据系数与图象的位置关系判断出图象特征,则符合所有特征的图象即为正确选项.(2)二次函数与方程、几何知识的综合应用将函数知识与方程、几何知识有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用几何图形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.(3)二次函数在实际生活中的应用题从实际问题中分析变量之间的关系,建立二次函数模型.关键在于观察、分析、创建,建立直角坐标系下的二次函数图象,然后数形结合解决问题,需要我们注意的是自变量及函数的取值范围要使实际问题有意义.
与“如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则...”相似的题目:
如图,在平面直角坐标系中,点A是抛物线y=a(x+2)2+k与y轴的交点,点B是这条抛物线上的另一点,且AB∥x轴,则以AB为边的等边三角形ABC的周长为&&&&9121518
如图,抛物线y=-x2+ax+b过点A(-1,0),B(3,0),其对称轴与x轴的交点为C,反比例函数y=kx(x>0,k是常数)的图象经过抛物线的顶点D.(1)求抛物线和反比例函数的解析式.(2)在线段DC上任取一点E,过点E作x轴平行线,交y轴于点F、交双曲线于点G,联结DF、DG、FC、GC.①若△DFG的面积为4,求点G的坐标;②判断直线FC和DG的位置关系,请说明理由;③当DF=GC时,求直线DG的函数解析式.&&&&
如图,抛物线y=√33x2√3y=kx(k≠0)的图象过点D,求k的值;(3)两动点M,N同时从点A出发,分别沿AO,AC的方向向点O,C移动,点M秒移动1个单位长度,点N每秒移动2个单位长度,设△MNO的面积为S,移动的时间为t,则S是否存在最大值?若存在,求出这个最大值,并求出此时的t的值;若不存在,请说明理由.
“如图,抛物线y=ax2+bx+c的顶点P...”的最新评论
该知识点好题
1如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为&&&&
2二次函数y=x2-8x+15的图象与x轴相交于M,N两点,点P在该函数的图象上运动,能使△PMN的面积等于12的点P共有&&&&
3如图,半圆A和半圆B均与y轴相切于O,其直径CD,EF均和x轴垂直,以O为顶点的两条抛物线分别经过点C,E和点D,F,则图中阴影部分面积是&&&&
该知识点易错题
1如图,点A(a,b)是抛物线y=12x2上一动点,OB⊥OA交抛物线于点B(c,d).当点A在抛物线上运动的过程中(点A不与坐标原点O重合),以下结论:①ac为定值;②ac=-bd;③△AOB的面积为定值;④直线AB必过一定点.正确的有&&&&
2如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为&&&&
3如图,已知抛物线P:y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
…(1)求A、B、C三点的坐标;(2)若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围.
欢迎来到乐乐题库,查看习题“如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则点D的坐标为____3);②试判断四边形ADBC的形状,并说明理由.(3)试问在直线AC上是否存在一点F,使得△FBD的周长最小,若存在,请写出点F的坐标;若不存在,请说明理由.”的答案、考点梳理,并查找与习题“如图,抛物线y=ax2+bx+c的顶点P的坐标为(1,-根号33),交x轴于A、B两点,交y轴于点C(0,-根号3).(1)求抛物线的表达式;(2)把△ABC绕AB的中点E旋转180°,得到四边形ADBC.①则点D的坐标为____3);②试判断四边形ADBC的形状,并说明理由.(3)试问在直线AC上是否存在一点F,使得△FBD的周长最小,若存在,请写出点F的坐标;若不存在,请说明理由.”相似的习题。当前位置:
>>>如图,抛物线y=-12x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y..
如图,抛物线y=-12x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C,对称轴为直线x=12,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限).(1)求抛物线的解析式和点D的坐标;(2)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.(3)点M是抛物线上的动点,在x轴上是否存在点N,使A、D、M、N四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的M点坐标;如果不存在,请说明理由.
题型:解答题难度:中档来源:不详
(1)∵OA=2∴A(-2,0)∵A与B关于直线x=12对称∴B(3,0),由于A、B,两点在抛物线上,∴-2-2b+c=0-92+3b+C=0;解得b=12c=3;∴y=-12x2+12x+3过D作DE⊥x轴于E∵∠BOC=90°,OD平分∠BOC∴∠DOB=45°,∠ODE=45°,∴DE=OE即xD=yD,∴x=-12x2+12x+3,解得x1=2,x2=-3(舍去)∴D(2,2);(4分)(2)存在∵BD为定值,∴要使△BPD的周长最小,只需PD+PB最小∵A与B关于直线x=12对称,∴PB=PA,只需PD+PA最小∴连接AD,交对称轴于点P,此时PD+PA最小,(2分)由A(-2,0),D(2,2)可得直线AD:y=12x+1(1分)令x=12,y=54∴存在点P(12,54),使△BPD的周长最小(1分)(3)存在.(i)当AD为平行四边形AMDN的对角线时,MD∥AN,即MD∥x轴∴yM=yD,∴M与D关于直线x=12对称,∴M(-1,2)(1分)(ii)当AD为平行四边形ADNM的边时,∵平行四边形ADNM是中心对称图形,△AND≌△ANM∴|yM|=|yD|,即yM=-yD=-2,∴令-12x2+12x+3=-2,即x2-x-10=0;解得x1,2=1±412,M(1+412,-2)或M(1-412,-2),(2分)综上所述:满足条件的M点有三个M(-1,2),M(1+412,-2)或M(1-412,-2).(1分)
马上分享给同学
据魔方格专家权威分析,试题“如图,抛物线y=-12x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y..”主要考查你对&&求二次函数的解析式及二次函数的应用&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。
发现相似题
与“如图,抛物线y=-12x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y..”考查相似的试题有:
当前位置:
>>>已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),..
已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),O是原点;(1)求这条抛物线的关系式;(2)设此抛物线与x轴的交点为A、B(A在B的左边)问在y轴上是否存在点P,使以O,B,P为顶点的三角形与△AOC相似?若存在,请求出点P的坐标;若不存在,请说明理由。
题型:解答题难度:中档来源:期末题
解:(1)y=x2-2x+3;(2)存在,当y=0,则(x-4)2-1=0,∴x1=2,x2=6,∴A(2,0),B(6,0),设P(0,m),则OP=|m|,在△AOC与△BOP中,①若∠OCA=∠OBP,则△BOP∽△COA,∴m=±4;②若∠OCA=∠OPB,则△BOP∽△AOC,m=±9,∴存在符合题意的点P,其坐标为(0,4),(0,-4),(0,9)或(0,-9)。
马上分享给同学
据魔方格专家权威分析,试题“已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),..”主要考查你对&&求二次函数的解析式及二次函数的应用,相似三角形的判定&&等考点的理解。关于这些考点的“档案”如下:
现在没空?点击收藏,以后再看。
因为篇幅有限,只列出部分考点,详细请访问。
求二次函数的解析式及二次函数的应用相似三角形的判定
求二次函数的解析式:最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况: (1)已知抛物线上三点的坐标,一般选用一般式; (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式; (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式; (4)已知抛物线上纵坐标相同的两点,常选用顶点式。 二次函数的应用:(1)应用二次函数才解决实际问题的一般思路: 理解题意;建立数学模型;解决题目提出的问题。 (2)应用二次函数求实际问题中的最值: 即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:①一般式:y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
②顶点式:y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。有时题目会指出让你用配方法把一般式化成顶点式。例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h&0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。具体可分为下面几种情况:当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;当h&0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;当h&0,k&0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
③交点式:y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。由一般式变为交点式的步骤:二次函数∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),∴y=ax2+bx+c=a(x2+b/ax+c/a)=a[x2-(x1+x2)x+x1?x2]=a(x-x1)(x-x2).重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向。a&0时,开口方向向上;a&0时,开口方向向下。a的绝对值可以决定开口大小。a的绝对值越大开口就越小,a的绝对值越小开口就越大。能灵活运用这三种方式求二次函数的解析式;能熟练地运用二次函数在几何领域中的应用;能熟练地运用二次函数解决实际问题。二次函数的其他表达形式:①牛顿插值公式:f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 二次函数表达式的右边通常为二次三项式。双根式y=a(x-x1)*(x-x2)若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。③三点式已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2)(x1-x3)与X轴交点的情况当△=b2-4ac&0时,函数图像与x轴有两个交点。(x1,0), (x2,0);当△=b2-4ac=0时,函数图像与x轴只有一个交点。(-b/2a,0)。Δ=b2-4ac&0时,抛物线与x轴没有交点。X的取值是虚数(x=-b±√b2-4ac的值的相反数,乘上虚数i,整个式子除以2a)二次函数解释式的求法:就一般式y=ax2+bx+c(其中a,b,c为常数,且a≠0)而言,其中含有三个待定的系数a ,b ,c.求二次函数的一般式时,必须要有三个独立的定量条件,来建立关于a ,b ,c 的方程,联立求解,再把求出的a ,b ,c 的值反代回原函数解析式,即可得到所求的二次函数解析式。
1.巧取交点式法:知识归纳:二次函数交点式:y=a(x-x1)(x-x2) (a≠0)x1,x2分别是抛物线与x轴两个交点的横坐标。已知抛物线与x轴两个交点的横坐标求二次函数解析式时,用交点式比较简便。①典型例题一:告诉抛物线与x轴的两个交点的横坐标,和第三个点,可求出函数的交点式。例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。点拨:解设函数的解析式为y=a(x+2)(x-1),∵过点(2,8),∴8=a(2+2)(2-1)。解得a=2,∴抛物线的解析式为:y=2(x+2)(x-1),即y=2x2+2x-4。②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。点拨:在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。
2.巧用顶点式:顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。点拨:解∵顶点坐标为(-1,-2),故设二次函数解析式为y=a(x+1)2-2 (a≠0)。把点(1,10)代入上式,得10=a·(1+1)2-2。∴a=3。∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。②典型例题二:如果a&0,那么当 时,y有最小值且y最小=;如果a&0,那么,当时,y有最大值,且y最大=。告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。点拨:析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。∴抛物线的顶点为(4,-3)且过点(1,0)。故可设函数解析式为y=a(x-4)2-3。将(1,0)代入得0=a(1-4)2-3, 解得a=13.∴y=13(x-4)2-3,即y=13x2-83x+73。③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。例如:(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式. (2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式. (3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式. (4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。点拨:解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。相似三角形:对应角相等,对应边成比例的两个三角形叫做相似三角形。互为相似形的三角形叫做相似三角形。例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'相似三角形的判定:1.基本判定定理(1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。(2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)(3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)(4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。2.直角三角形判定定理(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。3.一定相似:(1).两个全等的三角形(全等三角形是特殊的相似三角形,相似比为1:1)(2).两个等腰三角形(两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。) (3).两个等边三角形(两个等边三角形,三个内角都是60度,且边边相等,所以相似) (4).直角三角形中由斜边的高形成的三个三角形。相似三角形判定方法:证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。一、(预备定理)平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。& 四、如果两个三角形的三组对应边成比例,那么这两个三角形相似五(定义)对应角相等,对应边成比例的两个三角形叫做相似三角形六、两三角形三边对应垂直,则两三角形相似。七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。八、由角度比转化为线段比:h1/h2=Sabc易失误比值是一个具体的数字如:AB/EF=2而比不是一个具体的数字如:AB/EF=2:1
发现相似题
与“已知抛物线y=ax2+bx+c的顶点坐标为(4,-1),与y轴交于点C(0,3),..”考查相似的试题有:
说的太好了,我顶!
Copyright & 2015
Corporation, All Rights Reserved}

我要回帖

更多关于 已知抛物线顶点坐标 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信