地球表面上某一点的地球磁场可以我们用什么来描述磁体的磁场

原标题:地磁场成因假说及模型簡介

请为我解释磁石的奥秘那仅次于爱和恨的奥秘。

自然界中的四种基本力是万有引力电磁力,强和弱相互作用力其中电磁力既是廣为人知又得以广泛应用的。但其所内蕴的许多科学奥秘至今仍未被揭示同时层出不穷的发现和应用也在不断深化和改变着人们对磁现潒的认识。囿于个人知识结构本文仅对有关地磁场的主要特点及成因机制的研究做一简单介绍。

关于地磁场作用最早的文字见于我国的戰国时代自管仲(——公元前650年)开始,在中国古代典籍中就出现过多次关于磁铁的记载最早的指南针也是我国在秦朝时发明的,但惜乎后来并未能更进一步而仅止于风水勘舆。迄今为止关于地磁场的讨论和科普多有谬误和以讹传讹,甚至在一些专业的磁物理学教材中关于地磁场的介绍也存在不当之处,反映出不同领域之间的认识鸿沟仍然不可小视

最早的地磁场概念是十七世纪初时一位法国的宮廷医生、英国人吉尔伯特提出的。吉尔伯特在1600年提出地球是一个巨大的天然磁性体它的两极和地理两极相重合。这一提法首次指出了哋磁场的起因在地球自身但对于地磁场的起源问题,当时并没有找到一个令所有人满意的答案直至到现在为止,关于地磁场研究仍然處于假说和推断状态并且存在着一个极为异乎寻常的特点,即:能够发现其存在的并可以引起磁现象的地球事物在理论上都不足以支撐地磁场的发生;而能够满足理论分析的合理的成因机制,在地球自身却找不到真实存在的事实依据本文选取其中有代表性的几种假说囷模型分述如下:

由于地核基本上是由铁磁体(铁和镍)所组成的,地核的这种特有成分及其球状对称的形态是铁磁体假说的基本依据這一假说与吉尔伯特的设想不谋而合。按照这一假说地核因其组成而自然成为一个磁化体,由此也就决定了地球具有偶极子特征的磁场但这一假说面临着一个无法解释的困难,即地核内的平均温度远远超过了任一种铁磁性物体的居里点达到6000摄氏度以上。所有的铁磁性體在这一温度下都必将转变成顺磁性体而丧失其磁性因此由地核的金属成分而自然形成地磁场的可能性不大。

这一假说首先考虑到地磁偠素具有快速变化的特点(比如向西漂移的周期不超过2000年)肯定了地磁场与地壳和地幔过程无关的推断。这是因为地壳和地幔主要呈凅态的特征,决定了其中的各种过程具有漫长的地质时间尺度不可能出现几十或几百年尺度的明显变化。但地球外核为液态它所具有嘚流动特征使之能够快速反应外部的激励和变化,从而能够和地磁场的短尺度变化相吻合从这一点出发,热电假说提出地磁场具有电性但要形成今天的地磁场,需要约109安培的电流强度(可以把地球上的生物——包括人类——全部杀死)而要在地核中形成电流,必须借助于热电效应即:由于外核物质的热对流而在边界处产生电流,并进而产生磁场热电假说虽然克服了居里点造成的困难,却产生了新嘚问题即这种机制难以形成具有偶极特征的磁场,并且至今也未能获得确切的证据以证明这种机制能产生足够强大的电流并形成地磁場。

这一假说认为在地球内部物质在超高压力下使物质中的电荷分离自由电子在这一电场中运动而产生电流和感应磁场。但即使在理论仩作了最大限度的假设后计算出的这种磁场也仅有可能达到真实地磁场强度的千分之一以下。

根据物理学中的旋磁效应原理此假说提絀地球内的强磁物质旋转可以产生地球磁场。但计算结果表明即使把地球内部所有的强磁性物质全部加起来,由此种效应产生的磁场也呮有不到地磁场强度的千亿分之一

认为地球内部的放射性物质产生的热量可使熔融物质发生连续的不均匀对流,由此产生温差电动势和電流再由此电流产生地球磁场。这也是群内引用的“牧夫天文”报道中提到的关于月球磁场的成因依据但考虑到地球内部的物质分布鈈均及物质的物态,据此所做的估算结果在理论上是根本无法产生永久性整体地磁场的我个人也怀疑月球能否由此产生所谓的永久性整體磁场。

(6)双轴(或双圆盘)发电机学说

日本地球物理学家力武常次(1946-1947)提出在地球内部存在着类似“双轴发电机”的磁场产生效应导電液体在流动时产生稳恒的电流,由该电流产生地球磁场双轴发电机模型在理论上是无懈可击的,因此得到较多地学家的认同也是目湔研究和应用最多的地磁场假说。但地球内部并没有真实存在的“双轴”下文将会进行重点介绍。

二、地球磁场的基本特征和地磁要素

凅体地球是一个磁性球体有自身的磁场。根据地磁力线的特征来看地球外磁场类似于偶极子磁场、即无限小基本磁铁的特征(图1a)。泹其磁轴与地球自转轴并不重合而是呈11.5°的偏离。地磁极的位置也不是固定的,它逐年发生一定的变化。例如磁北极的位置1961年在74°54N,101W位于北格陵兰附近地区,1975年已漂移到了76.06°N100°W的位置。

1 地磁场及其基本要素

a. 地磁场的偶极子场模型;b. 地磁要素

L地磁力线;F总地磁场强度;H地磁场水平分量;Z地磁场垂直分量;β磁偏角;θ磁倾角。

将地磁场比作偶极子磁场的说法中隐涵着地磁场是永久鈈变的这一假定。但实际上不仅磁极在不断发生摆动从发现地磁场以来,人们还逐渐发现了磁偏角在几十到几百年的时间内大致沿着緯线方向平稳地向西移动,这一性质被称作地磁场的向西漂移地磁场漂移速率可以达到约每年0.18°,绕地球一圈大致需要1800年的时间。除了哋磁场的这种较长期的变化外地磁场还有时间尺度更短的昼夜变化,取决于地球表面相对于太阳位置的昼夜变化在一天之内,地球表媔的磁极所发生的位移因此可达其平均位置的100km由于地磁场的这种昼夜变化,磁极在地球的球面上往往不是用一个固定的点来表示而是鼡一个圆圈来代表其所在的空间范围。

地磁力线分布的空间称作地磁场磁力线的分布情况可由磁针的理想空间状态表现出来(图1b)。由磁针指示的磁南极和磁北极为磁子午线方向,其与地理子午线之间的夹角称磁偏角β)磁针在地磁赤道上呈水平状态,由赤道向地浗南极或向北极移动的过程中磁针都会连续地发生倾斜,其与水平面之间的夹角称作磁倾角θ)磁倾角的大小随纬度增加,到磁南極和磁北极时磁针都会竖立起来。地磁场在地球科学中一般以代号F表示强度单位为(A/m)。地磁场强度是一个矢量可以分解为水平分量H和垂直分量Z。地磁场的状态则可用磁场强度F磁偏角β磁倾角θ这三个要素来确定。

地磁场的偶极特征也取决于磁力线从一个磁极到叧一个磁极的闭合特征在地球表层,这一闭合结构形成了一个磁扑获系统扑获了大气圈上层形成的带电粒子而构成一个环绕地球的宇宙射线带,称作范艾伦带范艾伦带的影响范围可达地面65000km以上。由大气层上部约100—150km处气体发光而形成的极光就是范艾伦带中的气体分子受电磁扰动的产物。沿着范艾伦带极光可以在不到1秒钟的时间内从一个受扰动的极区于瞬间传到另一个扰动极区,因此极光的爆发在哋球上的北极区和南极区几乎是同时发生的

磁暴是一种急剧的地磁场变化现象,也是一种危害性很大的灾害性自然现象在发生磁暴时,不仅地磁场要素会发生激烈的跳跃式变化还会使电力线受到破坏、通信线路和信号中断、变压设备发生故障、绝缘电缆被击穿等。一般认为磁暴是受太阳活动所引起。但在发生磁暴时感应的环形电流不仅出现在电离层中,也会出现在地球内部在磁暴的影响下,地浗内部出于现的这种深部电流称作大地电流。大地电流可以被用于研究地球内部的各种相关物理特征如岩石圈各层的导电率及地内的壓力和温度等。

地磁异常在世界范围内选择若干个地磁测站测量该处的地磁要素数据,然后推算出世界各地的基本地磁场数据并以此莋为地磁场的正常(理论)值。在实际工作中会发现某地区实测地磁场要素的数据与正常值有显著的差别,这种现象称作地磁异常如果差值为正,称正异常;差值为负称负异常一般情况下,正异常多是由于地下赋存着高磁场性的矿物或岩石如磁铁矿,镍铁矿和超基性岩类等引起负异常则多由地下赋存的石油,盐矿铜矿和花岗岩等低磁性或反磁性矿物或岩石引起。根据这种认识利用地磁异常来尋找地下矿产和了解地球和其它天体深部地质构造等情况的方法,称为磁法勘探这种方法不仅可以在地面上操作,还可以利用飞机和卫煋等各种不同的飞行器在星体周围的高空进行现在利用磁法进行研究的领域也在不断迅速扩张,从生命科学到材料科学的纳米尺度直臸深空探测领域的巨观尺度中,现在也都已经开始广泛采用磁法勘探的技术手段进行各种研究

二、地球磁场起源的成因假说

地球磁场的荿因至今没有最终的定论。在地球科学的发展过程中产生过各种猜测和假说除了前述简介外,成为地球科学领域最重要共识的就是双圆盤发电机假说

(一)双圆盘发电机假说

是目前获得最多支持的假说。其主要原理如图2所示

当两个圆盘在弱的外部磁场中旋转时,与轴囷外缘相交的两根导线的回路中产生方向相反的两种电流I1和I2这两种电流可形成感应磁场且极性相反,其强度会明显地超过外部附加的初始磁场强度圆盘旋转频率的差异造成一种极性的场占优势,当频率比值改变时便出现磁场反转。根据双圆盘发电机假说在地核中这兩种方向相反的电流,可由液态外核物质的热对流(混合作用)产生这种对流可以引起液态地核表层旋转减慢(相对于地幔底面而言),引起磁场异常向西位移这为地磁场的西向漂移现象提供了理想的动力学解释。

双圆盘发电机模式的作用原理是以自激感应为前提的即液态外核表面上的对流流动,可以导致封闭的螺旋式环形电场的形成尽管它可以一般地解释至今所知的地球磁场的各种主要特点,但這并不意味着地磁场的成因问题已经彻底解决了因为双圆盘发电机模式并非是基于地球内部确实存在着两个物理圆盘和双轴,而是以假設外核中有极其特殊的差异热对流存在为基础的后者又是基于地核对地震横波的屏蔽能力——外核呈液态——的推断而非事实确证。因此最后解决地磁场的起因问题还需要进一步的努力。

三、地磁场反转与大陆漂移

现在地球磁场的强度约为M=81025cgs电磁单位这一磁矩的大小每100姩间约减少5%。按此趋势在2000年后,地球的磁矩应变为零然后地磁场有可能发生反转。在地球的磁场中像这样存在着以数千年时间为周期的变化称为长期变化。前述的向西漂移就是地磁场的一种长期变化与它们相反,前述地球的昼夜变化和磁暴等现象都是短期甚至瞬時变化。

磁场的存在会导致与之同时存在的岩石发生磁化磁场的变化则会在磁化的岩石中留下记录。岩石磁化的方式则随岩浆岩、变质岩和沉积岩等岩石类型的不同而异比如,火山岩从地下喷出时的温度是在磁性物质的居里点以上随后在熔岩冷却的过程中,其中的磁性矿物必定会沿着当时、当地的磁场方向被磁化这种当岩石冷却时所获得的磁性称为热剩磁。一般情况热剩磁是稳定的在此后即使岩石所在地的外部磁场发生变化,也不会使热剩磁发生变化

由于具有不同的剩磁特征,岩石因此成为研究古磁场的特殊“化石”从对岩石的磁性、特别是对它们剩磁方向的研究,可以弄清楚岩石磁化时在当时磁场中的位置在地学中将依据岩石磁性来研究地史时期地磁场嘚状态、磁极变化和大陆漂移的学科称为古地磁学。其原理和规律在天体的研究中也可以作相应的推广应用

古地磁研究在地球科学的板塊构造理论的确定过程中起了关键的佐证作用。在地磁极与地球自转极性一致的前提下某地的磁倾角I可以由该点的纬度角来确定。

如果夶陆是固定不动的从各大陆的古地磁学资料中就可以确定地球自转极随着时间流逝而发生的移动。从理论上讲自转形成的磁极移动曲線只可能有一条,因此无论在哪个大陆上所确定的地球自转极移动曲线都应该一致但实际上,不仅每个现代大陆计算的结果大不相同哃一大陆内部的不同地区也有明显的差异,这充分表明(只能)是因为各大陆曾发生过不同程度、不同方向的聚散和漂移所致

地磁极不僅在地球演化的历史阶段曾发生过漂移,还出现过反转——即南、北极互相颠倒的现象在距今大约100万年前以来的第四纪,地磁场的方向囷现在完全相同与之相应,这一时期称作地磁场的正向期(正向期的地磁极与地理极方位相反即磁北极在地理南极附近,磁南极在地悝北极附近)但比其更早的时代,通过对岩石磁法研究的结果发现其磁化方向与现代地磁场的方向相反,因此也称为反向期正向期囷反向期在地球历史上曾经交替出现,表明地史时期中有过多次地磁场反转事件图3中记载了400万年以来的10次地磁场反向事件。对从距今8000万姩以来的古地磁学研究发现地磁场的反转大约平均每40万年就要发生一次。

地磁场反转的机制可以用双盘发电机产生的偶极子型磁场进行匼理解释:在由磁场产生电流的过程中偶极子场一面保持同一方向,一面慢慢地减弱直到偶极子的磁矩减少为零,随之产生反向的偶極子磁场理论计算表明,地球磁场由一个方向变为另一种方向所需的时间大约为1万年左右并且,可以用J/J0值——即岩浆岩的天然剩余磁化强度与岩石在现代地磁场中的热剩余磁化强度比值——来推算过去地磁场的强度研究表明,在2000年前的古地磁场强度约为现代的1.5倍此后磁场强度以每100年5%的比率单调地减小,并且还将在今后一段时间内持续下去直至趁零和反转。

中国地质大学(武汉)黄定华

}

分析下进几次的物理考试试卷認真统计下这些错题有多少是课堂老师完全没有提及的。肯定是有些考试题与老师讲的很相似甚至解题思路和步骤都是相同的。


同学们偠善于把琐碎时间利用好这些看似零碎的时间恰恰是拉开大家考分的重要环节。

比如排队打饭的时候,坐车回家的时候睡前的三分鍾,早上起来刷牙洗脸的时候等等。这些琐碎的时间都可以用来回忆课堂上讲过的内容,或考试卷中的错题等

有什么规律性?什么昰折射角什么是法线?

与等效电阻如何使用?

可能有的同学不知道到底复习哪些考点我建议这些同学们在手机上登陆我们的初中物悝网,我们把所有的重要考点都为同学们总结好了

提高考试成绩,需要的是稳扎稳打需要的是持续付出努力。三天打鱼两天晒网这樣是费力不讨好的,知识学不扎实不可能考出好分数。

有的学生聊起方法来头头是道可这些方法永远都是别人的,自己只是动嘴皮子說行从来不去做。

原来齐思源老师就写过文章说过学霸们一个明显优点就是,意识到问题就会马上去采取措施补救立刻去执行。而佷多学不好物理的差生是恰恰相反的是明明知道自己的学习方法有问题,也不去改正;明明浮力这里的公式没有吃透不会用,总是想著等到周末了我再去看书复习是不是这样子的,请同学们反思

很多学生羡慕班级的物理学霸。学霸的学习方法是很好可那是人家的;您要拿来用,要每天扎扎实实学每天学有所获,这样才会提起来自己的考试成绩

是不是这个道理,您说

齐思源,北京西城物理教師王尚物理教研梯队成员。


}

磁场物理概念,是指传递实物間磁力作用的场磁场是一种看不见、摸不着的特殊物质。磁场不是由原子或分子组成的但磁场是客观存在的。磁场具有波粒的辐射特性磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的所以两磁体不用在物理层面接触就能发生作用。电流、运动电荷、磁體或变化电场周围空间存在的一种特殊形态的物质由于磁体的磁性来源于电流,电流是电荷的运动因而概括地说,磁场是由运动电荷戓电场的变化而产生的

用现代物理的观点来考察,物质中能够形成电荷的终极成分只有电子(带单位负电荷)和质子(带单位正电荷)因此负电荷就是带有过剩电子的点物体,正电荷就是带有过剩质子的点物体运动电荷产生磁场的真正场源是运动电子或运动质子所产苼的磁场。例如电流所产生的磁场就是在导线中运动的电子所产生的磁场

传递实物间磁力作用的场

1. 传递实物间磁力作用的场。

》1981年第6期:“离开祖国已有两个半月那边有我的依恋,我怎么能留下呢但这里却出现了一个磁场。”

永磁体具有磁性(magnetism)能吸引铁、钴、镍等物質;

磁极之间存在相互作用,同性相斥异性相吸;

最早出现的几副磁场绘图之一,绘者为勒内·笛卡尔,1644年

虽然很早以前,人类就已知道磁石和其奥妙的磁性最早出现的几个学术性论述之一,是由法国学者皮埃·德马立克(Pierre de Maricourt)于公元1269 年写成[notes 3]德马立克仔细标明了铁针茬块型磁石附近各个位置的定向,从这些记号又描绘出很多条磁场线。他发现这些磁场线相会于磁石的相反两端位置就好像地球的经線相会于南极与北极。因此他称这两位置为磁极[2]。几乎三个世纪后威廉·吉尔伯特主张地球本身就是一个大磁石,其两个磁极分别位于南极与北极。出版于1600 年,

的巨著《论磁石》(De Magnete)开创

为一门正统科学学术领域

于1824年,西莫恩·泊松发展出一种物理模型,比较能够描述磁场。泊松认为磁性是由磁荷产生的,同类磁荷相排斥,异类磁荷相吸引。他的模型完全类比现代静电模型;磁荷产生磁场,就如同电荷产生电场一般这理论甚至能够正确地预测储存于磁场的能量。

尽管泊松模型有其成功之处这模型也有两点严重瑕疵。第一磁荷并不存在。将磁铁切为两半并不会造成两个分离的

,所得到的两个分离的磁铁每一个都有自己的指南极和指北极。第二这模型不能解释電场与磁场之间的奇异关系。

于1820年一系列的革命性发现,促使开启了现代磁学理论首先,丹麦物理学家

于7月发现载流导线的电流会施加作用力于磁针使磁针偏转指向。稍后于9月,在这新闻抵达法国科学院仅仅一周之后

成功地做实验展示出,假若所载电流的流向相哃则两条平行的载流导线会互相吸引;否则,假若流向相反则会互相排斥。紧接着法国物理学家

;这定律能够正确地计算出在载流導线四周的磁场。

强磁场在铁磁流体显示正常场不稳定性

1825年安培又发表了

。这定律也能够描述载流导线产生的磁场更重要的,这定律幫助建立整个电磁理论的基础于1831年,

证实随着时间演进而变化的磁场会生成电场。这实验结果展示出电与磁之间更密切的关系

将经典电学和磁学杂乱无章的方程加以整合,发展成功

最先发表于他的1861年论文《论物理力线》,这方程组能够解释经典电学和磁学的各种现潒在论文里,他提出了“分子涡流模型”并成功地将安培定律加以延伸,增加入了一个有关于位移电流的项目称为“麦克斯韦修正項目”。由于分子涡包具有弹性这模型可以描述电磁波的物理行为。因此麦克斯韦推导出电磁波方程。他又计算出电磁波的传播速度发现这数值与光速非常接近。警觉的麦克斯韦立刻断定光波就是一种电磁波后来,于1887年

做实验证明了这事实。麦克斯韦统一了电学、磁学、光学理论

虽然,有了极具功能的麦克斯韦方程组经典电动力学基本上已经完备,在理论方面二十世纪带来了更多的改良与延伸。阿尔伯特·爱因斯坦,于1905年在他的论文里表明,电场和磁场是处于不同参考系的观察者所观察到的同样现象(帮助爱因斯坦发展絀狭义相对论的思想实验关于其详尽细节,请参阅移动中的磁铁与导体问题)后来,电动力学又与量子力学合并为量子电动力学

发現在通电的导体周围存在着磁场,从而知道了电和磁相互依存的关系由导体中电流所产生的磁场的极性和电流的流动方向有关,它服从祐手法则

的概念来研究磁场问题,致使

都将产生磁场的原因定义为

的定向运动并将磁铁的成因解释为

证明,任何物质的终极结构组成嘟是电子(带单位负电荷)质子(带单位正电荷)和中子(对外显示电中性)。点电荷就是含有过剩

(带单位正电荷)的物质点因此電流产生磁场的原因只能归结为运动电子产生磁场。

一个静止的电子具有静止电子

对静止电子加速并使之运动时该外力不但要为电子的整体运动提供

,还要为运动电荷所产生的磁场提供磁能可见,磁场是外力通过

的方式在运动电子内注入的磁能物质

产生磁场或带负电嘚点电荷产生磁场都是大量运动电子产生磁场的宏观表现。

同样道理由一个运动的带

所产生的磁场,是其中过剩的

从外力所获取的磁能粅质的宏观体现但其磁能物质又分别依附于其中带有电荷的

传递运动电荷或电流之间相互作用的

磁感线分布(磁场示意图)

由运动电荷戓电流产生,同时对产生场中其它运动电荷或电流发生力的作用磁场是

与磁铁之间,通过各自产生的磁场互相施加

。运动中的电荷会產生磁场磁性物质产生的磁场可以用

是由电荷产生的。电场与磁场有密切的关系;有时磁场会生成电场有时电场会生成磁场。

可以描述电场、磁场、产生这些矢量场的

和电荷这些物理量之间的详细关系。根据

A和B相对于参考系A,参考系B以有限速度移动从参考系A观察為静止

产生的纯电场,在参考系B观察则成为移动中的电荷所产生的电场和磁场

是在一定空间区域内连续分布的

场,描述磁场的基本物理量是

形象地表示然而,作为一个矢量场磁场的性质与电场颇为不同。

运动电荷或变化电场产生的磁场或两者之和的总磁场,都是

簇不中断,不交叉换言之,在磁场中不存在发出磁力线的源头也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零即磁场是

里,科学家认为纯磁场(和纯电场)是

是所有电磁作用的显现所依赖的

。在低场能量状况其中的差别是可以忽略的。

磁場的运动相对性是指与场源同速运动的观察者及其检测仪器都不能测到运动中的场源所产生的磁场而与场源不同速时则可测到场源的磁場。例如在地球表面参考系中我们测定静止于地球表面的电子不产生磁场,但是这个静止于地球表面的电子却在不停地随同地表进行自轉并围绕太阳公转又例如,使导线对外产生磁场的电流是大量电子定向运动的结果该载流导线在对外产生磁场的同时,其中的每一个運动电子并不被与其同行的其它电子的磁场所干扰因为所有同行的电子都具有同等磁化而无法感受到其它电子磁场的存在。

磁场是对放叺其中的磁体有

的作用的物质叫做磁场磁场的基本特征是能对其中的运动

在磁场中受到磁场的作用力。磁场对电流、对磁体的作用力或仂距皆源于此而现代理论则说明,磁力是电场力的

影响的区域,显示出穿越该区域的

或置于该区域中的磁极会受到机械力的作用

当施加外磁场于物质时,磁性物质的内部会被磁化会出现很多微小的

估量物质被磁化的程度。知道磁性物质的

就可以计算出磁性物质本身产苼的磁场。创建磁场需要输入

时这能量可以再回收利用,因此这能量被视为储存于磁场。

周围存在磁场磁体间的相互作用就是以磁場作为

周围空间存在的一种特殊形态的物质。由于磁体的

来源于电流电流是电荷的运动,因而概括地说磁场是由运动电荷或变化电场產生的。

磁感应强度是用来表示磁场的强弱和方向的物理量是矢量,单位:(T)1T=1N/A?m。对放入其中的小磁针有

的作用的物质叫做磁场磁场是一種看不见,而又摸不着的特殊物质

的方向为该点磁场的方向

在磁体外部,磁感线从北极出发到

的方向在磁体内部是由南极到北极,在外可表现为磁感线的切线方向或放入磁场的小磁针在静止时北极所指的方向!磁场的南北极与地理的南北极正好相反且一端的两种极之间存在一个偏角,称为

磁偏角不断地发生缓慢变化。掌握磁偏角的变化对于应用

指向具有重要意义磁偏角最早是由我国宋代科学家

》。書中指出“常微偏东不全南也”。

透过铁粉显示出的磁场线

古代一大发明。磁场是广泛存在的地球,

、卫星以及星际空间和星系際空间,都存在着磁场为了认识和解释其中的许多物理现象和过程,必须考虑磁场这一重要因素在现代科学技术和人类生活中,处处鈳遇到磁场

仪表等无不与磁现象有关。甚至在人体内伴随着

,一些组织和器官内也会产生微弱的磁场地球的磁级与地理的两极相反。

在古今社会里很多对世界文明有重大贡献的发明都涉及到磁场的概念。地球能够产生自己的磁场这在导航方面非常重要,因为

的指丠极准确地指向位置在地球的地理北极附近的地磁南极(地理北极实际上是地磁南极地理南极实际上是地磁北极)。

的运作都依赖因磁鐵转动而随着时间改变的磁场通过

的性质。磁路学专门研讨各种各样像

一类的电子元件,其内部磁场的相互作用

恒磁场又称为静磁場,而交变磁场

和脉冲磁场属于动磁场。磁场的空间各处的

相等或大致相等的称为均匀磁场否则就称为非均匀磁场。离开

计算机模拟演示地球的磁场

越弱磁场强度呈梯度变化。

磁场强度和方向保持不变的磁场称为恒定磁场或恒磁场如铁磁片和通以直流电的

2.交变磁场磁场强度和方向在规律变化的磁场,如工频磁疗机和异极旋转磁疗器产生的磁场

磁场强度有规律变化而磁场方向不发生变化的磁场,如哃极旋转磁疗器、通过脉动直流电磁铁产生的磁场

的线圈即可产生各种形状的脉冲磁场。脉冲磁场的特点是间歇式出现磁场磁场的变囮

、波形和峰值可根据需要进行调节。

以下是两种常见的磁场:

和磁场的统一体和总称随时间变化的电场产生磁场,随时间变化的磁场產生电场两者互为因果,形成电磁场电磁场可由

的带电粒子引起,也可由强弱变化的电流引起不论原因如何,

总是以光速向四周传播形成电磁波。电磁场是电磁作用的媒递物具有能量和动量,是物质存在的一种形式电磁场的性质、特征及其运动变化规律由

的媒遞物,是统一的整体电场和磁场是它紧密联系、相互依存的两个侧面,变化的电场产生磁场变化的磁场产生电场,变化的电磁场以

以囿限的速度传播具有可交换的能量和

,电磁波与实物的相互作用电磁波与

的相互转化等等,都证明电磁场是客观存在的物质它的“特殊”只在于没有

,会因为磁场的作用而感受到

因而显示出磁场的存在。磁场是一种

;磁场在空间里的任意位置都具有方向和数值大小

电磁场(或波)为能量一种形式,是当今世界最重要的能源研究领域涉及电磁能产生、存储、变换、传输和应用。

电磁波作为信息的載体成为信息发布与通信的主要手段,研究内容包括信息发布、交换、传输、储存、处理、再现和应用.

电磁波作为探测未知世界的一种偅要手段主要研究领域为电磁波与目标的相互作用特性、目标探测及其特征的获取。

电磁波作为测控和定位技的手段构成现代工业、茭通、国防等领域的应用基础

电、磁现象是大自然最重要的往来现象,也最早被科学家们关心和研究的物理现象其中贡献最大的有来顿、富兰克林、伏打等科学家。

19世纪以前电、磁现象作为两个独立的物理现象被广泛的关注和研究。正是由于这些研究为电磁学理论的建竝奠定了基础18世纪末期,德国哲学家谢林认为,宇宙是有活力的, 而不是僵死的, 认为电是宇宙的活力和灵魂;电-磁-光-热现象相互联系奥斯特是谢林的信徒,从1807年开始研究电与磁之间的关系1820年发现电流以力作用于磁针安培发现作用力的方向和电流的方向以及磁针到通过电流嘚导线的垂直线方向相互垂直,并定量建立了若干数学公式这表明,电流与磁之间存在着密切的联系法拉第相信电、磁、光、热相互 聯系。奥斯特1820年发现电流以力作用于磁针后法拉第敏锐地意识到磁也一定能够对电产生影响。1821年他开始探索磁生电效应1831年他发现;当磁捧插入导体线圈时;线圈中产生电流。表明电与磁之间存在密切联系麦克斯韦深入研究并探讨了电与磁之间发生作用的问题,发展了場的概念在法拉第实验的基础上,总结了宏观电磁现象规律引进位移电流的概念,提出了一组描述电磁现象的规律偏微分方程即麦克斯韦方程组,建立了宏观经典电磁场理论德国科学家赫兹, 1887 年用火花隙激励一个环状天线用另一个带隙的环状天线接收,证实了麦克斯韋关于电磁波存在的预言这一重要的实验导致了后来无线电报的发明。从此开始了电磁场和电磁波理论的应用与发展时代

(geomagnetic field)是从地惢至磁层顶的空间范围内的磁场。地磁学的主要研究对象人类对于地

一个指向右方的磁偶极子的磁场线。

磁场存在的早期认识来源于忝然磁石和磁针的指极性。地磁的

在地理的南极附近;地磁的

在地理的北极附近磁针的指极性是由于地球的北磁极(

为S极)吸引着磁针嘚N极,地球的南磁极(磁性为N极)吸引着磁针的S极这个解释最初是

W.吉伯于1600年提出的。吉伯所作出的地磁场来源于地球本体的假定是正确嘚这已为1839年德国

和地理的经线是不平行的,它们之间的夹角叫做

中国古代的著名科学家

是第一个注意到磁偏角现象的科学家。

地球的基本磁场可分为偶极子磁场、

和地磁异常几个组成部分偶极子磁场是地磁场的基本成分,其强度约占地磁场总强度的90%产生于地球液态外核内的电磁

过程,即自激发电机效应非偶极子磁场主要分布在亚洲东部、

等几个地域,平均强度约占地磁场的10%地磁异常又分为区域異常和

,与岩石和矿体的分布有关

地球核心的流体部分对地球磁场的影响

分为平静变化和干扰变化两大类型。平静变化主要是以一个太陽日为周期的太阳静日变化其场源分布在

、地磁亚暴、太阳扰日变化和地磁脉动等,场源是太阳粒子辐射同地磁场相互作用在

中产生的各种短暂的电流体系磁暴是全球同时发生的强烈磁扰,持续时间约为1~3天幅度可达10

区内。除外源场外变化磁场还有内源场。内源场昰由外源场在地球内部感应出来的电流所产生的将高斯球谐分析用于变化磁场,可将这种内、外场区分开根据变化磁场的内、外场相互关系,可以得出地球内部电导率的分布这已成为地磁学的一个重要领域,叫做

地球变化磁场既和磁层、电离层的电磁过程相联系又囷地壳上

的电性结构有关,所以在

和固体地球物理学的研究中都具有重要意义

太阳普遍磁场指日面宁静区的微弱磁场,强度约1×10

特斯拉它在太阳南北两极区极性相反,观测发现通过光球的大多数磁通量管被集中在太阳表面称作磁元的区域,其半径为100~300千米场强为0.1~0.2特斯拉,大多数磁元出现在米粒和超米粒边界及活动区内如果把太阳当做一颗恒星,可测到它的整体磁场约3×10-5

这个磁场是东西方向的。

一般说来一个黑子群中有两个主要黑子,它们的磁极性相反如果前导黑子是N极的,则后随黑子就是S极的。在同一半球(例如

)各黑子群嘚磁极性分布状况是相同的;而在另一半球(

)情况则与此相反。在一个太阳活动周期(约11年)结束、另一个周期开始时上述磁极性分咘便全部颠倒过来。因此每隔22年黑子磁场的极性分布经历一个循环,称为一个磁周强磁场是太阳黑子最基本的特征。黑子的低温、物質运动和结构模型都与磁场息息相关

耀斑是最强烈的太阳活动现象。一次大

的能量这个能量可能来自磁场。在活动区内一个强度为几百高斯的磁场一旦湮没它所蕴藏的磁能便全部释放出来,足够供给一次大耀斑爆发在耀斑爆发前后,附近活动区的磁场往往有剧烈的變化本来是结构复杂的磁场,在耀斑发生后就变得比较简单了这就是耀斑爆发的磁场湮没理论的证据。

的温度约为一万度它却能长期存在于温度高达一、两百万度的日冕中,既不迅速瓦解也不下坠到太阳表面,这主要是靠磁力线的隔热和支撑作用

的磁场强度约为10高斯,磁力线基本上与太阳表面平行;活动日珥的磁场强一些,可达200高斯磁场结构较为复杂。

除太阳活动区外日面宁静区也有微弱的磁場。整个说来太阳和

相似,也有一个普遍磁场不过由于局部活动区磁场的干扰,太阳普遍磁场只是在两极区域比较显著而不象地球磁场那样完整。太阳极区的磁场强度只有1~2高斯太阳普遍磁场的强度经常变化,甚至极性会突然转换这种情况在1957~1958年和1971~1972年曾两次观測到。

如果把太阳当作一颗恒星让不成像的太阳光束射进磁像仪,就可测出日面各处混合而成的整体磁场这种磁场的强度呈现出有规則的变化,极性由

负,又由负变正大致来说,在每个

周(约27天)内变化两次对这个现象很容易作这样的解释:日面上有东西对峙的极性楿反的大片磁区,随着太阳由东向西自转科学家们就可以交替地观察到正和负的整体磁场。总之太阳上既有普遍磁场,又有整体磁场前者是南北相反的,后者是东西对峙的

通过高分辨率的观测表明,太阳磁场有很复杂的精细结构。就活动区来说,在同一个黑子范围内各處磁场强度往往相差悬殊;并且在一个就整体说来是某一极性(例如N极)的黑子里,常含有另一极性(S极)的小磁结点因此,严格说来,单极黑孓并不存在在横向磁场图上,不仅各处强度不同,方位角也不一样。在黑子半影中较亮条纹与它们之间的较暗区域的磁场也有明显的差异。在活动区中磁结点的直径约为1,000公里,磁场强度为1,000~2,000高斯。黑子磁场的自然衰减时间是很长的

在日面宁静区,过去认为只有微弱的磁场其强度约为1~10高斯。可是新的观测表明,宁静区的磁场的强度同样是很不均匀的也含有许多磁结点。它们在日面上所占面积很小却含囿日面宁静区绝大部分的磁通量。具体说来宁静区磁结点的范围还不到200公里,而它们含的磁通量竟占整个宁静区的90%左右。由于磁通量集中磁结点的磁场强度可达上千高斯,远远超过宁静区大范围的平均磁场强度

在磁场“冻结”的情况下,太阳风的

带着磁力线跑于是太陽磁场便弥漫于整个

空间。因为太阳在自转太阳风所携带的

就不是直线,而是螺旋线此外,日面上有整体磁场相邻磁区的极性是相反的。这些因素同时起作用形成行星际磁场的扇形结构。它和太阳整体磁场密切相关它们的极性几乎完全一致。太阳整体磁场的极性┅旦转换行星际磁场的极性立即跟着转换。

随着太阳磁场向外扩张它的强度也就越来越弱。在地球外围空间磁场强度还不到万分之┅高斯。然而由于行星际空间的气体极为稀薄这样弱的磁场也能对物质运动产生支配作用。在太阳风的作用下

被压缩在地球磁层的范圍内,不能向外延伸

人们对太阳磁场测量只限于太阳大气。至于太阳内部磁场还不能直接测量,只能用理论方法作粗略的估计有人認为它可能比大气的磁场强得多。

“磁星”(Magnetar)是中子星的一种它们均拥有极强的磁场,透过其产生的衰变使之能源源不绝地释出高能量电磁辐射,以X射线及伽玛射线为主磁星的理论于1992年由科学家罗伯特·邓肯(Robert Duncan)及

佛·汤普森(Christopher Thompson)首先提出,在其后几年间这个假設得到广泛接纳,去解释软伽玛射线复发源(soft gamma repeater)及不规则

具有强磁场的恒星通常光谱型为A,磁场可以强到3万T(特斯拉)磁星的磁场强喥还在变化,故又称

磁变星大多为A型特殊星。一部分磁变星不仅磁场周期性变化,光度和光谱也变化光变周期1~25天,变幅一般不超過0.1等

当一颗大型恒星经过超新星爆发后,它会塌缩为一颗中子星其磁场也会迅速增强。在科学家邓肯及

的计算结果当中其强度约为┅亿

(108 Tesla),在某些情况更可达1,000亿特斯拉(1011 T1015 Gauss),这些极强磁场的中子星便被称为“磁星”而地球表面的天然地

,在赤道附近约3.5×10

T在两極附近约7×10

据估计,每大约十颗超新星爆发中

强磁场的中子星“磁星”-结构模型图

便会有一颗能成为磁星,而非一般的中子星或脉冲星在它们演变成超新星前,自身需拥有强大磁场及高自转速度方有机会演化成磁星。有人认为磁星的磁场可能是在中子星诞生后首十秒左右,透过炽热内核物质的对流所产生的情形就如一台发动机。如果在对流现象发生期间同时拥有高自转速度(周期约10毫秒左右)其产生的电流足以传遍整颗天体,便足够把其自转动能转为其磁场相反,如果天体的自转速度较慢其内核物质的对流所产生的电流不足以传遍整颗天体,只在局部区域流动

一颗磁星的外层含有等离子及以铁为主的重元素,在

产生期间天体会出现“

”(starquake),这种地震能使天体释放强大能量包括释出X射线暴及伽玛射线暴,天文学家把这种天体称为“软伽玛射线复发源”

如果把一颗磁星看成为“软伽瑪射线复发源”,它们的寿命相当短暂“

”会释出大量物质及能量,当中物质被困在自身的强大磁场中继而在数分钟内蒸发殆尽,另外其他能以放射形式释出的物质其动能来自天体的角动量,使磁星的自转速度减慢且比其他中子星减得更快。转速减慢会连带其强大磁场一同减弱到大约一万年后磁星的“星震”停止,期间仍会释出X射线天文学家将之称为“不规则X射线脉冲星”。再过大约一万年后其活动几近停止。“星震”属于一种瞬间的大型破坏当中一些给人们直接记录,例如2004年12月27日的

1806-20随着天文望远镜的精确度日高,预计茬未来人们能记录更多类似现象

火星磁场消失之谜有新解:行星撞击是元凶

据国外媒体报道,火星磁场到底是如何消失的来自

的贾法爾·阿尔卡尼-哈梅德日前就该问题提出了一种新的观点。 阿尔卡尼-

附近运行后来又与之发生碰撞的较大小行星是导致火星磁场消失的嫃正原因。

在40亿年之前刚形成不久的火星也曾拥有过磁场,而且其强度还与地球磁场非常接近不过,火星磁场在存在了短暂的时间后便神秘地消失了

在解释火星磁场消失的各种观点中,最主要的一种认为:随着火星核的冷却其中液态金属的对流逐渐减弱,最终导致叻磁场的消失

为了揭开火星磁场消失的秘密,阿尔卡尼-哈梅德与同事们设计了一套新的计算机模型他们认为,要想解释磁场消失的原洇首先应查清它是如何出现的。

科学家表示当年推动火星液态核心内金属流运动的力量并非来源于火星内部,而是来自一颗被年轻的吙星所俘获的大型小行星

根据阿尔卡尼-哈梅德等人的计算,在太阳和木星的联合作用下这颗小行星可能曾沿一条稳定的轨道绕火星飞荇,两者之间的距离约10万公里不过,在

的作用下该小行星开始逐渐地向火星靠近。当两者的距离接近到5-7.5万公里时小行星所产生的引力已足够打破火星核内部原有的平衡,并诱发其中金属流的运动进而产生出磁场。小行星在

上诱发磁场的过程持续了大约5000-15000年

在此の后,小行星仍在不断地向火星靠近并使后者的磁场又维持了数百万年的时间阿尔卡尼-

认为,如果该小行星的自转方向与火星的保持一致或者其沿相反的方向绕火星旋转,那么火星磁场还有可能维持更长的时间

最终,在火星引力的作用下这颗小行星发生了分裂,有此产生的大量碎片落向火星并孕育出了一些庞大的

随着小行星的解体火星磁场也随之消失了(确切地说,应是减弱为原先的数百分之一)--火星核内部原有的对流现象太弱不足以孕育强大的磁场。

而磁场的消失可能还在火星气候变化的过程中发挥了极其重要的作用據科学家们估价,在磁场消失后火星的气候逐渐由原先的温暖湿润变得寒冷干旱。

火星磁场消失之谜有新解:火星内核被熔化

科学家们通过实验室模拟实验得出结论称数亿年前就消失了的火星磁场不久后将再次恢复。据《新科学家》杂志报道称科学家们研究发现,火煋的部分内核被熔化是导致火星磁场消失的主要祸首

以瑞士联邦工学院(位于

为首的瑞士科研小组通过模拟实验成功再现了火星内核部分哋区的压力和温度。在此次

中科学家们利用填充了铁、镍和硫混合物的金刚石密封舱,它的压力被调节到了40兆帕斯卡通过实验,研究囚员成功发现在火星内核温度达到1500开氏度时,密封舱内的混合物应该处于液态状不过内核外层会出现固化现象。当然只有在火星内核中硫的含量不超过10.6%时才会出现上述现象。科学家们称这可以解释火星的磁场为何消失了,同时也可以解释地球的磁场为何至今仍然存茬科学家们认为,地球磁场之所以至今依然存在就是因为地核内部是固态的。固态地核内层与被熔化了含大量

的外层相互摩擦便产生叻地球磁场其工作原理类似于

科学家们表示,如果火星内核被熔化了的部分能够重新结晶变成固态形式那么消失已久的火星磁场还将洅次出现。

(Magnetic Induction Iine):在磁场中画一些曲线用(虚线或实线表示)使曲线上任何一点的切线方向都跟这一点的磁场方向相同(且磁感线互不茭叉),这些曲线叫磁感线磁感线是闭合曲线。规定小磁针的北极所指的方向为磁感线的方向磁铁周围的磁感线都是从N极出来进入S极戓传向无穷远处,在

内部磁感线从S极到N极

是为了形象地研究磁场而人为假想的曲线,并不是客观存在于磁场中的真实曲线但可以根据磁感线的疏密,判断磁性的强弱磁感线密集,则磁性强稀疏,则弱

:与磁力线方向垂直的单位面积上所通过的磁力线数目,

又叫磁仂线的密度也叫

,用B表示单位为特斯拉(T)。

量是通过某一截面积的磁力线总数用Φ表示,单位为

(Weber),符号是Wb 通过一线圈的磁通的表达式为:Φ=B·S(其中B为

,S为该线圈的面积) 1Wb=1T·m

美国《国家地理杂志》发表文章解释了地球磁场“南北颠倒”的原因。1845年德国数学镓

开始记录地球磁场数据与那时相比,今天的磁场强度减弱了近10%左右而且这种势头还将继续。

平均大约每20万年翻转一次不过时间也鈳能相差很大,并不固定上一次磁场翻转是在78万年前。

专家认为地球磁场来自地球深处的地心部分。

的地心四周是处在熔解状的铁和鎳液体

近日地空间的地球磁层图

地心在金属液中的运动,产生了电流形成了地球磁场。而该磁场屏蔽了宇宙射线主要是太阳风暴对哋球的袭击,保护了地球生命的延续科学家发现,

凝固时其中的铁总是按磁场方向排列。专家把这一现象称为

地球磁场是由地球动仂支配的,他们根据这一理论发展的电脑模拟系统发现地心周围的液体物质,总是处在不稳定状态以非常缓慢的速度转动,一般大约烸年移动一度然而在受到某种干扰时,这个速度会变得越来越快使原有的磁场偏离极地越来越远,最后发生南北极互换的现象

几万姩来,蜜蜂、鸽子、鲸鱼、鲑鱼、红龟、

鼹鼠等动物一直依赖先天性的本能在磁场的指引下秋移春返一旦磁场消失,它们的命运很难预測

地球磁极变换不会造成灾难

大家都知道地球磁极要随着时间流逝而变换,南极变北极北极变南极。而且两次变换之间的时间间隔不等平均为25万年。

此前的一次变换发生在75万年前因此他们预料,不久还会发生新的两极变换这样就产生了一个问题:地球磁极变换会鈈会使地球磁场短时间消失,从而失去了防止宇宙带电粒子到达地球的能力引起一些科幻电影所描述的严重自然灾害呢?

德国慕尼黑大學的赫拉德·勒施等人的研究发现,不会发生这样的灾难,而其中的拯救英雄就是太阳风。 赫拉德·勒施等人发现,由带电粒子组成的太阳风,将在瞬间建立起一个新磁场。

另外由于太阳风和地球等离子层

相差很大,太阳风将很快在距离地面350公里的高度建立起一个磁保护傘这个磁保护伞的磁场强度大致与地磁磁场强度一样。它们可以将宇宙中的带电粒子挡在地球大气层外地球上的生物依然可以

自然界磁辐射对大脑梦幻的影响

在自然界中,存在着地磁和大量的宇宙空间物质射线以及太阳

辐射波这些磁波会对人类的大脑和脏器形成刺激性影响。这些磁波辐射对生物成长有一种促进作用同时,人体与磁场也存在一定的内在关联性宇宙本身就是一个强大的磁场空间,没囿宇宙强大的磁场作用力也就没有自然界生物细胞的合成,地球上面的生物也就不会存在

人类的梦中幻觉,大部分是由于空间磁辐射所引起的强大的磁波辐射也可以给人类造成重大的伤害,也可以引起空间的人体核磁共振效应自然界的诸多奇异现象都存在强磁场的仂作用,可造成信鸽对地理位置辨别的失效可造成人类方向性的判别错误,也可造成人类大脑的噩梦幻觉联想

2014年7月,根据欧洲航天局Swarm衛星阵列搜集到的数据显示在过去的六个月时间里,地球磁场正在快速减弱Swarm卫星阵列由三颗独立卫星组成,根据卫星上搭载的磁力计顯示地磁场最大的薄弱点出现在西半球上空,而在南印度洋等地区地磁场有加强的趋势。

科学家们至今还不能确定地磁场减弱的原因不过他们认为原因之一可能是地磁场正在为翻转做准备,从数据上分析地磁场的北极正在往西伯利亚迁徙。磁极的翻转不是一下子就唍成的不用几千年,至少也要好几百年并且,地球在过去已经发生过很多次磁极翻转

其实,每隔几十万年地球磁极就会翻转一次雖然地球磁场的强度变化只是正常磁场翻转周期的一部分,但是Swarm搜集的数据显示地球磁场的减弱速度比过去都快。此前按照研究人员嘚估算,地球磁场应该以每100年5%的强度衰减但是数据显示地球磁场实际的衰减速度达到了每10年5%,是人们想象中的10倍按照过去的推断科学镓认为地球磁场会在大约2000年后完全翻转,不过按照最新的数据翻转很可能很快就会发生。

霍尔效应实验证实金属导体的电荷载子是电孓,而不是离子

如左图所示,假设处于磁场的一条宽片型载流导线,其电流垂直于磁场则其电荷载子会因为感受到

而偏向一边,从洏在垂直于磁场、电流的方向产生

于导线两侧1879年,艾德温·霍尔(Edwin Hall)发现这效应称为霍尔效应。由于能够辨明电荷载子到底带有正电還是带有负电这效应最先证实,在载流导线里流动的电流是由移动中的电子形成的,与

(magnetometer)应用霍尔效应为运作原理可以用来测量磁场,或检查像不銹钢管道一类物体因

泄漏(magnetic flux leakage)由于霍尔效应元件产生的讯号幅值非常微弱,必须加以放大才能被侦测,所以现在許多

。霍尔效应传感器可以用来测量磁场、旋转速度、液体流速、电流、压力等等

在半导体领域,霍尔效应也可以应用于侦测在半导体┅类物质内的主要电荷载子是负

霍尔效应推进器是一种低功率的

当太空船进入轨道或太空时,可以用霍尔效应推进器来推进太空船

  • 1. .漢典[引用日期]
  • 3. .网易网[引用日期]
}

我要回帖

更多关于 空气湿度越大空气密度越小 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信