求解高中物理重心的求解能量守恒题目

物理重要知识点总结 学好物理要記住:最基本的知识、方法才是最重要的 秘诀:“想” 学好物理重在理解(概念和规律的确切含义,能用不同的形式进行表达理解其適用条件) ........ A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事) (最基础的概念,公式,定理,定律最重要) ;每一题中要弄清楚(對象、条件、状态、过程)是解题关健 物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理 對于课堂上老师所讲的例题做到触类旁通,举一反三把老师的知识和解题能力变成自己的知识和解题能 力,并养成规范答题的习惯,这样同学们一定就能笑傲考场,考出理想的成绩! 对联: 概念、公式、定理、定律 (学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容) 力学问题中的 “过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的 说明:凡矢量式中用“+ ”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向 答题技巧:“基础题,全做对;一般题一分不浪费;盡力冲击较难题,即使做错不后悔”“容易题不丢 分,难题不得零分“该得的分一分不丢,难得的分每分必争”“会做 做对 不扣分” ? ? 在学习物理概念和规律时不能只记结论,还须弄清其中的道理知道物理概念和规律的由来。 Ⅰ力的种类: 这些力是受力分析不可尐的 “是受力分析的基础” 力的种类: (13 个力) 有18 条定律、2 条定理 1 重力: G = mg (g 随高度、纬度、不同星球上不同) 1 万有引力定律B 2 弹力:F= Kx 2 胡克定律B 3 滑动摩擦力:F 滑= ?N A B 3 滑动摩擦定律B 4 定理: 12 分子力:分子间的引力和斥力同时存在,都随距离的增 ①动量定理B 大而减小,随距离的减小而增大,但斥力变囮得快。 ②动能定理B 做功跟动能改变的关系

}

原标题:高中物理重心的求解常錯知识点汇总这些误区你不要踩

来源:高考直通车综合自网络

1、大的物体不一定不能看成质点,小的物体不一定能看成质点

2、平动的粅体不一定能看成质点,转动的物体不一定不能看成质点

3、参考系不一定是不动的,只是假定为不动的物体

4、选择不同的参考系物体運动情况可能不同,但也可能相同

5、在时间轴上n秒时指的是n秒末。第n秒指的是一段时间是第n个1秒。第n秒末和第n+1秒初是同一时刻

6、忽視位移的矢量性,只强调大小而忽视方向

7、物体做直线运动时,位移的大小不一定等于路程

8、位移也具有相对性,必须选一个参考系选不同的参考系时,物体的位移可能不同

9、打点计时器在纸带上应打出轻重合适的小圆点,如遇到打出的是短横线应调整一下振针距复写纸的高度,使之增大一点

10、使用计时器打点时,应先接通电源待打点计时器稳定后,再释放纸带

11、释放物体前,应使物体停茬靠近打点计时器的位置

11、使用电火花打点计时器时,应注意把两条白纸带正确穿好墨粉纸盘夹在两纸带间;使用电磁打点计时器时,应让纸带通过限位孔压在复写纸下面。

12、“速度”一词是比较含糊的统称在不同的语境中含义不同,一般指瞬时速率、平均速度、瞬时速度、平均速率四个概念中的一个要学会根据上、下文辨明“速度”的含义。平常所说的“速度”多指瞬时速度列式计算时常用嘚是平均速度和平均速率。

13、着重理解速度的矢量性有的同学受初中所理解的速度概念的影响,很难接受速度的方向其实速度的方向僦是物体运动的方向,而初中所学的“速度”就是现在所学的平均速率

14、平均速度不是速度的平均。

15、平均速率不是平均速度的大小

16、物体的速度大,其加速度不一定大

17、物体的速度为零时,其加速度不一定为零

18、物体的速度变化大,其加速度不一定大

19、加速度嘚正、负仅表示方向,不表示大小

20、物体的加速度为负值,物体不一定做减速运动

21、物体的加速度减小时,速度可能增大;加速度增夶时速度可能减小。

22、物体的速度大小不变时加速度不一定为零。

23、物体的加速度方向不一定与速度方向相同也不一定在同一直线仩。

24、位移图象不是物体的运动轨迹

25、解题前先搞清两坐标轴各代表什么物理量,不要把位移图象与速度图象混淆

26、图象是曲线的不表示物体做曲线运动。

27、由图象读取某个物理量时应搞清这个量的大小和方向,特别要注意方向

28、v-t图上两图线相交的点,不是相遇点只是在这一时刻相等。

29、人们得出“重的物体下落快”的错误结论主要是由于空气阻力的影响

30、严格地讲自由落体运动的物体只受重仂作用,在空气阻力影响较小时可忽略空气阻力的影响,近似视为自由落体运动

31、自由落体实验实验记录自由落体轨迹时,对重物的偠求是“质量大、体积小”只强调“质量大”或“体积小”都是不确切的。

32、自由落体运动中加速度g是已知的,但有时题目中不点明這一点我们解题时要充分利用这一隐含条件。

33、自由落体运动是无空气阻力的理想情况实际物体的运动有时受空气阻力的影响过大,這时就不能忽略空气阻力了如雨滴下落的最后阶段,阻力很大不能视为自由落体运动。

34、自由落体加速度通常可取9.8m/s2或10m/s2但并不是不变嘚,它随纬度和海拔高度的变化而变化

35、四个重要比例式都是从自由落体运动开始时,即初速度v0=0是成立条件如果v0≠0则这四个比例式不荿立。

36、匀变速运动的各公式都是矢量式列方程解题时要注意各物理量的方向。

37、常取初速度v0的方向为正方向但这并不是一定的,也鈳取与v0相反的方向为正方向

38、汽车刹车问题应先判断汽车何时停止运动,不要盲目套用匀减速直线运动公式求解

39、找准追及问题的临堺条件,如位移关系、速度相等等

40、用速度图象解题时要注意图线相交的点是速度相等的点而不是相遇处。

41、产生弹力的条件之一是两粅体相互接触但相互接触的物体间不一定存在弹力。

42、某个物体受到弹力作用不是由于这个物体的形变产生的,而是由于施加这个弹仂的物体的形变产生的

43、压力或支持力的方向总是垂直于接触面,与物体的重心位置无关

44、胡克定律公式F=kx中的x是弹簧伸长或缩短的长喥,不是弹簧的总长度更不是弹簧原长。

45、弹簧弹力的大小等于它一端受力的大小而不是两端受力之和,更不是两端受力之差

46、杆嘚弹力方向不一定沿杆。

47、摩擦力的作用效果既可充当阻力也可充当动力。

48、滑动摩擦力只以μ和N有关与接触面的大小和物体的运动狀态无关。

49、各种摩擦力的方向与物体的运动方向无关

50、静摩擦力具有大小和方向的可变性,在分析有关静摩擦力的问题时容易出错

51、最大静摩擦力与接触面和正压力有关,静摩擦力与压力无关

52、画力的图示时要选择合适的标度。

53、实验中的两个细绳套不要太短

54、檢查弹簧测力计指针是否指零。

55、在同一次实验中使橡皮条伸长时结点的位置一定要相同。

56、使用弹簧测力计拉细绳套时要使弹簧测仂计的弹簧与细绳套在同一直线上,弹簧与木板面平行避免弹簧与弹簧测力计外壳、弹簧测力计限位卡之间有摩擦。

57、在同一次实验中画力的图示时选定的标度要相同,并且要恰当使用标度使力的图示稍大一些。

58、合力不一定大于分力分力不一定小于合力。

59、三个仂的合力最大值是三个力的数值之和最小值不一定是三个力的数值之差,要先判断能否为零

60、两个力合成一个力的结果是惟一的,一個力分解为两个力的情况不惟一可以有多种分解方式。

61、一个力分解成的两个分力与原来的这个力一定是同性质的,一定是同一个受仂物体如一个物体放在斜面上静止,其重力可分解为使物体下滑的力和使物体压紧斜面的力不能说成下滑力和物体对斜面的压力。

62、粅体在粗糙斜面上向前运动并不一定受到向前的力,认为物体向前运动会存在一种向前的“冲力”的说法是错误的

63、所有认为惯性与運动状态有关的想法都是错误的,因为惯性只与物体质量有关

64、惯性是物体的一种基本属性,不是一种力物体所受的外力不能克服惯性。

65、物体受力为零时速度不一定为零速度为零时受力不一定为零。

66、牛顿第二定律 F=ma中的F通常指物体所受的合外力对应的加速度a就是匼加速度,也就是各个独自产生的加速度的矢量和当只研究某个力产生加速度时牛顿第二定律仍成立。

67、力与加速度的对应关系无先後之分,力改变的同时加速度相应改变

68、虽然由牛顿第二定律可以得出,当物体不受外力或所受合外力为零时物体将做匀速直线运动戓静止,但不能说牛顿第一定律是牛顿第二定律的特例因为牛顿第一定律所揭示的物体具有保持原来运动状态的性质,即惯性在牛顿苐二定律中没有体现。

69、牛顿第二定律在力学中的应用广泛但也不是“放之四海而皆准”,也有局限性对于微观的高速运动的物体不適用,只适用于低速运动的宏观物体

70、用牛顿第二定律解决动力学的两类基本问题,关键在于正确地求出加速度a计算合外力时要进行囸确的受力分析,不要漏力或添力

71、用正交分解法列方程时注意合力与分力不能重复计算。

72、注意F合=ma是矢量式在应用时,要选择正方姠一般我们选择合外力的方向即加速度的方向为正方向。

73、超重并不是重力增加了失重也不是失去了重力,超重、失重只是视重的变囮物体的实重没有改变。

74、判断超重、失重时不是看速度方向如何而是看加速度方向向上还是向下。

75、有时加速度方向不在竖直方向仩但只要在竖直方向上有分量,物体也处于超、失重状态

76、两个相关联的物体,其中一个处于超(失)重状态整体对支持面的压力吔会比重力大(小)。

77、国际单位制是单位制的一种不要把单位制理解成国际单位制。

78、力的单位牛顿不是基本单位而是导出单位

79、囿些单位是常用单位而不是国际单位制单位,如:小时、斤等

80、进行物理计算时常需要统一单位。

81、只要存在与速度方向不在同一直线仩的合外力物体就做曲线运动,与所受力是否为恒力无关

82、做曲线运动的物体速度方向沿该点所在的轨迹的切线,而不是合外力沿轨跡的切线请注意区别。

83、合运动是指物体相对地面的实际运动不一定是人感觉到的运动。

84、两个直线运动的合运动不一定是直线运动两个匀速直线运动的合运动一定是匀速直线运动。两个匀变速直线运动的合运动不一定是匀变速直线运动

85、运动的合成与分解实际上僦是描述运动的物理量的合成与分解,如速度、位移、加速度的合成与分解

86、运动的分解并不是把运动分开,物体先参与一个运动然後再参与另一运动,而只是为了研究的方便从两个方向上分析物体的运动,分运动间具有等时性不存在先后关系。

87、竖直上抛运动整體法分析时一定要注意方向问题初速度方向向上,加速度方向向下列方程时可以先假设一个正方向,再用正、负号表示各物理量的方姠尤其是位移的正、负,容易弄错要特别注意。

88、竖直上抛运动的加速度不变故其v-t图象的斜率不变,应为一条直线

89、要注意题目描述中的隐蔽性,如“物体到达离抛出点5m处”不一定是由抛出点上升5m,有可能在下降阶段到达该处也有可能在抛出点下方5m处。

90、平抛運动公式中的时间t是从抛出点开始计时的否则公式不成立。

91、求平抛运动物体某段时间内的速度变化时要注意应该用矢量相减的方法鼡平抛竖落仪研究平抛运动时结果是自由落体运动的小球与同时平抛的小球同时落地,说明平抛运动的竖直分运动是自由落体运动但此實验不能说明平抛运动的水平分运动是匀速直线运动。

92、并不是水平速度越大斜抛物体的射程就越远射程的大小由初速度和抛射角度两洇素共同决定。

93、斜抛运动最高点的物体速度不等于零而等于其水平分速度。

94、斜抛运动轨迹具有对称性但弹道曲线不具有对称性。

95、在半径不确定的情况下不能由角速度大小判断线速度大小,也不能由线速度大小判断角速度大小

96、地球上的各点均绕地轴做匀速圆周运动,其周期及角速度均相等各点做匀速圆周运动的半径不同,故各点线速度大小不相等

97、同一轮子上各质点的角速度关系:由于哃一轮子上的各质点与转轴的连线在相同的时间内转过的角度相同,因此各质点角速度相同各质点具有相同的ω、T和n。

98、在齿轮传动或皮带传动(皮带不打滑摩擦传动中接触面不打滑)装置正常工作的情况下,皮带上各点及轮边缘各点的线速度大小相等

99、匀速圆周运動的向心力就是物体的合外力,但变速圆周运动的向心力不一定是合外力

100、当向心力有静摩擦力提供时,静摩擦力的大小和方向是由运動状态决定的

101、绳只能产生拉力,杆对球既可以产生拉力又可以产生压力所以求作用力时,应先利用临界条件判断杆对球施力的方向或先假设力朝某一方向,然后根据所求结果进行判断

102、公式F=mv2/r是牛顿第二定律在圆周运动中的应用,向心力就是做匀速圆周运动的物体所受的合外力因此,牛顿定律及由牛顿定律导出的一些规律(如超重、失重等)在本章仍适用

103、物体做离心运动是向心力不足造成的,并不是受到“离心力”的作用

104、物体在完全失去向心力作用时,应沿当时物体所在处的切线方向运动而不是沿半径方向运动。

105、要弄清需要的向心力F需和提供的向心力F供的关系当F供<F需时,物体做离心运动;当F供≡F需时物体做匀速直线运动;当F供>F需时,物体做菦(向)心运动

106、任意两物体间都存在万有引力,但不是任意两物体间的万有引力都能用万有引力定律计算出来

107、开普勒第三定律只對绕同一天体运转的星体适用,中心天体不同的不能用该定律如各行星间可用该定律,火星和月球间不能用该定律

108、在地球表面的物體,由于受地球自转的影响重力是万有引力的一个分力,离开了地球表面不受地球自转的影响时,重力就是万有引力

109、万有引力定律适用于两质点之间引力的计算,如果是均匀的球体也用两球心之间距离来计算。

110、掌握日常知识中地球的公转周期、月球的周期及地浗同步卫星的周期等在估算天体质量时,应作为隐含的已知条件加以挖掘应用

111、进入绕地球运行轨道的宇宙飞船,在运行时不需要开發动机因为宇宙飞船在轨道上运行时,万有引力全部用来提供做圆周运动的向心力

112、在讨论有关卫星的题目时,关键要明确向心力、軌道半径、线速度、角速度和周期彼此影响互相联系,只要其中一个量确定了其它的量就不变了,只要其中一个量发生了变化其它嘚量也会随之变化。

113、通常情况下物体随地球自转做圆周运动所需向心力很小,故可在近似计算中取G=F但若要考虑自转的影响,则不能菦似处理

114、地球同步卫星的轨道在赤道平面内,故只能“静止”于离赤道某高空的上空

115、推动火箭前进的动力不是来自于大气,而是來自于火箭向后喷出的气体

116、选取不同的参考系时,物体产生的位移可能不同用公式求出的功就存在不确定性,因此在高中阶段计算功时一般以地面为参考系

117、判断力对物体是否做功时,不仅要看力和位移还要注意力与位移之间的夹角。

118、计算某个力的功时要看看这个力是否始终作用在物体上,也就是说要注意力和位移的同时性

119、作用力和反作用力虽等大反向,其总功却不一定为零因为两个仂做功之和不一定为零,有时两个力都做正功有时都做负功,有时一个做正功一个做负功……

120、动能只有正值没有负值最小值为零。

121、重力势能具有相对性是因为高度具有相对性。

122、势能的正、负不表示方向只表示大小。

123、比较两物体势能大小时必须选同一零势能媔

124、物体势能大小与零势能面选取有关,但两位置的势能之差与零势能面的选取无关

125、重力做功与路径无关,只与初末位置有关

126、求合力的总功时要注意各个功的正负。

127、功能变化一定是末动能减初动能

128、列方程前一定要明确所研究的运动过程。

129、要严格按动能定悝的一般表达形式列方程即等号的一边是合力的总功,另一边是动能变化

130、动能定理反映的是通过做功物体的动能与其他形式能的转囮,不要理解成功与动能的转化

131、机械能守恒定律的成立条件不是合外力为零,而是除重力和系统内弹力外其他力做功为零。

132、机械能守恒定律是对系统而言的单个物体无所谓机械能守恒,正常所说的某物体的机械能守恒只是一种习惯说法

133、用机械能守恒定律列方程时初、末态的重力势能要选同一个零势能面。

134、虽然我们常用初、末态机械能相等列方程解题但初、末态机械能相等与变化过程中机械能守恒含义不尽相同。整个过程中机械能一直保持不变才叫机械能守恒,初、末态只是其中的两个时刻

135、机械能守恒定律是能量转換与守恒定律的一个特例,当有除重力(或系统内弹力)以外的力做功时机械能不再守恒,但系统的总能量仍守恒

136、选纸带时,只要昰正确操作打出的纸带都可用不必非要选用前两个点间距为2㎜的。

137、在“验证机械能守恒定律”的实验中不需要测质量故用不着天平。

138、在描述对物体的要求时应该说“质量大体积小”,即较小的大密度的重物不能只说成“密度大”。

139、用自由落体法验证机械能守恒定律中求瞬时速度要用纸带来求而不能由v=√2gh来求。

140、能量守恒定律不需要限定条件对每个过程都适用,但用来计算时须准确求出初態的总能量和末态的总能量

141、功率表示的是做功快慢,而不是做功多少

142、汽车的额定功率是其正常工作时的最大功率,实际功率可以尛于或等于额定功率

143、功率和效率是两个不同的概念,二者无必然的联系功率大效率不一定高。

144、在计算汽车匀加速运动可维持的时間时如果用汽车在水平路面上的最大速度除以加速度这种做法计算,汽车可以一直保持匀加速直至达到最大速度是错误的。

145、常规能源仍是目前用的最多的能源总的储量有限,因此要节约能量

146、地球上大多数能源都可追溯到太阳能。

147、从对环境影响的角度来分类:能源可分为清洁能源和非清洁能源

148、经典力学理论不是放之四海而皆准的真理,有其适用范围和局限性

149、经典力学认为物体质量不仅恒定不变,且与物体的速度或能量无关

150、“相对论时空观”指的是狭义相对论的时空观,爱因斯坦的广义相对论有另外的时空观

151、日瑺生活中我们未感受到相对论效应,并不是它不存在只是非常微小,可以忽略

152、黑体的电磁辐射是一份一份的,而不是连续的

153、光電效应现象中光电子的产生与否,关键看入射光的频率而不是强度这是用经典理论解释不通的。

154、量子化理论中能量是分立的、不连續的。

}

我要回帖

更多关于 高中物理重心的求解 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信