孤岛惊魂4CPU占100%风扇声音很大,如何清理主机CPU风扇发烫。

0

用MSI Afterburner 在游戏中看吧,切出游戏低负载当然温度低。

切到窗口模式就能看见了
0
很明显你这机箱风道不行啊 我那机子前段时间最高是68度 最近这几天最高是62度 CPU一般是55-58最高 ...

照你这么说我估计是CPU风扇影响了风道,大霜塔三分之一空间都让它挡住了
0
很明显你这机箱风道不行啊 我那机子前段时间最高是68度 最近这几天最高是62度 CPU一般是55-58最高 ...

游戏狂人, 积分 1585, 距离下一级还需 415 积分

游戏狂人, 积分 1585, 距离下一级还需 415 积分

0
今年育碧的大革命和孤岛4都挺烧卡最高83度平均77度,用鲁大师测
本人显卡没楼主那么好,后来通过设置显卡驱动把温度将到66度,风扇声音也不大了
0
我在上海,这两天天气好,温度回暖了一些,有个十来度,办公室里空调不给力,前些日子室内只有零上几度,人都要冻僵了。
我用的E31230V3 + GTX580,效果全开ultra,挺顺畅的,基本就45-60之间,偶尔会到30多。感觉上这游戏对cpu的需求也挺高的,好多显卡比我好的,但是cpu差一些的朋友,帧数大都比我低一些。
我第一台电脑用的AMD的cpu,那时候还是奔腾100的年代,结果发热太大,断断续续的死机,果断换了intel,之后就一直对amd不感冒了。话说amd的芯片太考验人品,脸差的朋友还是不要试了。

中级玩家, 积分 164, 距离下一级还需 86 积分

中级玩家, 积分 164, 距离下一级还需 86 积分

0
0

高级玩家, 积分 385, 距离下一级还需 215 积分

高级玩家, 积分 385, 距离下一级还需 215 积分

0
恩杰h230静音防尘机箱。。
对了,锯齿没开这么高,其他都是最高
另外,垂直同步是最高不超过60fps,你最高到不了60,所以开不开没差
我关了锯齿有80帧,这时如果开垂直就变成60帧了
0
机箱风扇跟显卡的距离有些远,我又加了个PCI位风扇对着显卡吹,温度降不降的也没感觉出来,图个心理安慰吧。另外我想提高下显卡风扇转速,用amd驱动里手动调了但是没效果啊,风扇还是自动控制转速,何解? 我显卡是微星hd7950 oc be,玩游戏最高到75度了,一般根据游戏不同都在50-75之间。

您需要 才可以下载或查看,没有帐号?

}

就在两个多月前,正式在全球发布了第八代标压移动处理器,随后各大电脑厂商都纷纷跟进。作为国内游戏本领域的知名品牌,雷神也在第一时间推出了911Air全面屏轻薄游戏本。雷神官方的宣传图中,将这款产品描述为“西装野兽”,这与刘作虎将一加6描述成“西装猛兽”颇有几分相似。

如今,发布会过去两个多月,产品终于上市了。那么雷神的这款产品的表现究竟如何?脱下西装,这款产品的内部又埋藏着怎样的秘密呢?本次评测将会揭晓答案。

非常感谢SMZDM给与的众测机会,测评笔记本向来是个大工程,这次也不例外,我会分十二个部分来详细解读。

雷神911Air目前共有高中低档三个配置,这次评测的机器是位居中间的911Air星空版。采用了i7-8750H+GTX1050Ti的配置,搭配的屏幕是IPS雾面屏: 

电竞版则是将内存容量升级到16GB,两条8GB内存构成双通道,同时屏幕也升级成了144MHz的72% NTSC色域电竞屏:

还有一款是911Air星云版,搭载的是i5-8300H+GTX1050,其实i5-8300H的性能也已经比较强劲了,和上代旗舰7700HQ的差别再10%左右:

我归纳了一下这次测试的星空版的主要参数,制作表格如下图:

接口方面,911Air的外部接口包含2个USB3.0接口,1个USB3.1 Gen2(Type C)接口,1个读卡器接口,1个音频接口,1个RJ45网线接口,和1个HDMI接口,机器无内置光驱。内部接口包含2个内存插槽,1个2.5寸SATA3接口,1个M.2 2280插槽(PCIe 3.0 x4规格)。CPU和显卡直接封装在主板上,不可更换。

由于这篇测评的篇幅较长,因此直接把结论前置,方便想要快速了解产品特性的值友们阅读。个人还是建议感兴趣的值友阅读整篇测评,文中会有不少干货放出。

雷神911Air相比雷神以往推出的产品,在外观设计和产品定位上,有很大的不同。与以往夸张的游戏本造型不同,这次的911Air外形设计更偏内敛和商务。具体来看,A面虽然采用了整面的塑料材质,但是做出了三向拉丝的金属效果,而且标志采用了贴纸的设计,可以撕去和更换,也就是说A面可以理解为是无Logo的设计。B面由于采用了超窄边框的全面屏,使得亮屏后的观感非常不错。C面则采用了铝合金材质,质感相当出色。D面设计了大口径的进风格栅,在美观和功能性之间达到了较好的平衡。

配置性能方面,i7-8750H是目前中高端游戏本普遍采用的高端六核处理器,而显卡部分采用了mGTX1050Ti,虽然相比mGTX1060还有较大差距,不过用来应付主流网络游戏和绝大多数单机游戏都没有问题。而且在如此轻薄的笔记本中塞入GTX1060显卡,如果散热压不住降频的话,就十分浪费了,所以GTX1050Ti的配置可以说是比较合理的一个选择。其他的配置,如内存、、无线网卡等,雷神选用的也是一线品牌的产品,性能参数在主流水平之上,可以说这方面还是相当厚道的。

外设方面,45%NTSC色域的IPS屏,相比TN屏素质要略好一些,不过与72%NTSC色域的笔记本相比,还是能看出差别的,考虑到产品的售价,也是可以理解,如果对屏幕要求较高可以选择911Air电竞版。浮岛式键盘的手感不错,键程适中,按键回弹有力,键位之间的间距也足够大。布局上为游戏做了优化,例如方向键就是完整的,不像其他一些游戏本,上下键都只有一半。音箱方面,虽然有Sound Blaster的音效加持,不过911Air的音响表现只能说是中规中矩,与我手边的两台售价超过万元的笔记本相比还有一定差距。打游戏的话问题不大,如果是要听音乐,建议还是外接耳机或音箱。

散热方面,总体上来说911Air的表现还是相当不错的。雷神对于这款笔记本在散热策略(Thermal Policy)上的调教,可以说是比较激进的,更偏向于产品性能的发挥。具体来说,双烤20分钟后,CPU维持在96度,仍然保持2.7GHz的睿频,功耗也保持在45W,要知道很多其他轻薄本在CPU超过90度后,就会降频到35W甚至是25W。再看GPU方面,双烤6分钟后撞上温度墙,核心温度达到并维持在85度左右,频率下降到1150MHz水平,距离950MHz的最低频率仍有相当余量。雷神笔记本的散热调教都是稳妥中略偏激进的,雷神911GT游戏本也是类似的情况。当然,雷神这样的调校,也是有一定底气的,三条共通式热管的设计,为高效的散热打下了坚实的基础。模具方面,雷神911Air可以看作是暗影2或光影3的魔改强化版,还是比较给力的。有关这一点,后文在散热和模具章节,会具体展开分析。其他方面,911Air的噪音表现不错,续航能力一般。

做工用料方面,机器本身的外观做工较为到位,开模的精度较高。C面采用了一整块金属,质感不错。通过拆机,发现内部的布局也较为合理规整,主要料件都选择了一线供应商的产品,CPU和GPU的供电也留足了冗余,可以说整体的做工用料可以打高分。

综上所述,雷神911Air星空版是一款性价比较高的轻薄游戏本。虽然雷神称其为游戏本,不过由于其低调商务的外观,即使带进办公室也毫无违和感。出色的外观设计,配合强大的硬件配置和为游戏而调校的散热方案,使其成为了名符其实的西装野兽。目前市场上同类产品还是非常少见的,可以说雷神找到了一个非常合适的定位。对于有这种商务风格的游戏本需求的用户,雷神911Air是一个不错的选择。

张大妈寄来的包装非常大,内部用缓冲材料做了很好的保护。

外部采用了硬卡纸的包装,上面有Thunderobot的Logo。

包装一侧贴着标签和能效标识。从标签来看,产品是重庆达丰(广达重庆厂)生产的。

内部还有一个纸盒包装,上面有雷神简洁的新Logo:

内层包装采用了易碎标签,保证用户收到的产品是全新的:

取走泡棉,就是主机了,用无纺布袋做了保护:

雷神这次的包装还是比较用心的。激动人心的时刻,取出笔记本的本体:

三个方向的拉丝纹理,使得塑料有了金属的质感。

附件方面,有一张额外的金属Logo贴纸,几颗额外的螺丝,以及使用说明书和保修卡等:

机身的转轴是隐藏式的设计,铰链隐藏在内部保证了视觉上的美感:

B面是微边框全面屏,C面则是采用了一整块铝合金金属材质:

右上角是雷神Logo的贴纸,用户可以选择撕下,变成无Logo的设计。

来看机身左侧,从左到右依次是锁孔、RJ-45网线接口、电源和硬盘指示灯、USB3.0接口、3.5mm耳机二合一接口和读卡器接口。

机身右侧,从后至前依次为电源接口、HDMI接口、USB3.1 Gen2 (Type-C)接口和一个USB3.0接口。其中的Type-C接口是Gen2的,也就是说支持转DisplayPort视频输出,不过不支持雷电略为可惜。

转轴处的设计兼顾了美观和功能性,出风口就位于这里。我发现Thunderobot的Logo有了一些小变化,最后的字母T有一定改版,和之前的有所不同。

键盘采用浮岛式结构,触摸板为一整片的设计。

电源键在键盘左上方,阻尼非常明显,按下后上面的灯带会亮起。

右手掌托边上有几个标志,分别是Intel和Nvidia,还有创新Sound Blaster 5的音效和雷神科技的微信公众号。

机器D面,进风口面积很大,高高抬起的脚垫保证了充足的进风量。

易碎贴,主要是厂家用来确保退换的时候没有拆机的,并不影响保修,所以后文会有拆机。

电源是来自群光的150W电源,广达模具的雷神笔记本几乎都采用群光的电源,这款150W的型号设计上较为紧凑,相比911GT的180W电源,在体积和重量上都要小了不少,已经非常接近XPS15使用的那只130W的台达电源适配器。

下面看一下机器的厚度尺寸,机器长大约358mm。

机器的深度约255mm,具体如图。

机器前端做了倒角的处理,视觉上厚度约11mm,不过实际整体厚度为20mm左右。

机器后端有最厚的部分约为22mm,可以说是非常轻薄的游戏本了。

值得一提的是,屏幕的左右边框的确非常窄,实测只有6mm,算是产品的一大亮点。现在窄边框的笔记本正越来越流行,成为大势所趋:

便携性方面,整机的重量为2.16kg左右:

再算上电源部分的话,整机重量为2.76kg。便携性在游戏本中还是相当不错的,和商务本在同一水平。

开箱外观部分结束,下面介绍产品的外设体验。

外设的体验是笔记本使用中非常重要的一个方面,因而单列一章介绍。有些笔记本在配置上瞬秒对手,然而在实际的外设使用体验上却差强人意,导致用户无法获得最优的体验。因而这里会分键盘、触摸板、音箱和屏幕几个角度,来进行简单的分析。

键盘方面,911Air采用了孤岛式白色背光键盘,背光两档可调。浮岛式键盘的手感不错,键程适中,按键回弹有力,键位之间的间距也足够大。布局上为游戏做了优化,例如方向键就是完整的,不像其他一些游戏本,上下键都只有一半。

触摸板方面,911Air的触摸板为一体式的设计,面积比较大,表面做了磨砂处理。按键手感清脆,而且支持Windows的手势操作,体验不错。

音箱方面,虽然有Sound Blaster的音效加持,不过911Air的音响表现只能说是中规中矩,打游戏的话问题不大,如果是要听音乐,建议还是外接耳机或音箱。

屏幕方面,45%NTSC色域的IPS屏,相比TN屏素质要略好一些,不过与72%NTSC色域的笔记本相比,还是能看出差别的,考虑到产品的售价,也是可以理解,如果对屏幕要求较高可以选择911Air电竞版。

外设体验部分到此结束,下面介绍硬件参数概览部分,后续会进行拆机分析。

CPU-Z读取的信息:

i7-8750H,八代Coffee Lake微架构,BGA封装不可更换。六核十二线程,相比上一代有巨大的提升。支持Intel睿频加速技术,主频2.2GHz,多核最大睿频3.9GHz,L3缓存9MB。

AIDA64里的CPUID截图,可以看到睿频规格,单核最高41x,六核最多39x,相当强悍的表现。短时睿频功耗限制90W,持续时间2.44毫秒,可以说是非常短的时间,因为现在基本没有一台风冷笔记本的散热可以压住90W的TDP,更不要说911Air这种轻薄型的产品了。长时睿频功耗限制45W,软件显示这些数值是Unlocked,这说明是可以用XTU来解锁CPU功耗的。

进入Intel的XTU工具查看一下,这是Intel前几年推出的官方调校工具,可调节很多CPU参数以及内存参数。由于厂家并没有锁定功率,所以很多参数是可调的,不过还是建议普通用户不要做调整,以防止机器过热导致的运行不稳定。

V,其他主流桌面平台的产品要到今年年底才会大批量上市,移动平台更是要到2019了,所以10系显卡目前来看短期内不会过时。

NvidiaInspector截图,这里可以看到独显的其他一些信息,如超频范围,电压调节范围,高温降频线和TDP控制阀等。mGTX1050Ti不能解锁TDP控制阀,降频线为85度。

AIDA64中的北桥信息,北桥早已整合进CPU中,主板上已经没有实体的北桥了。北桥主要负责内存的通讯和PCI-E显卡的通讯,核显的数据传输也在北桥中完成。

PCH信息,连接音频、HDMI和PCI-E控制器。其中NVMe固态硬盘占据一条PCI-E x4总线,有线网卡和读卡器分别占据一条PCI-E x1总线。

内存品牌为三星,容量8GB,生产日期17年第42周。

硬盘的信息,先来看固态硬盘,来自大厂光宝,NVMe固态:

为西数1TB的5400转硬盘。

电池信息,型号MWL32b,设计容量51.282Wh。官方给的数值是51Wh。

显示屏信息,屏幕品牌为AUO友达光电,型号AUO21ED。

屏库中包含该型号的参数,官方数据如下:

分辨率,可视角度85/85/85/85,材质为AHVA屏(友达的IPS)。显示色彩262K,色域46%,对比度800:1,亮度250cd/m?,接口为30pin eDP。硬件参数概览部分到此结束,下面介绍性能测试部分。

先简单说明一下测试环境,出厂的系统版本是Windows 10 1709,还未更新到1803版本。系统预装的显卡驱动版本已经是最新的,测试时电源模式设置为高性能,其他均采用默认设置。

这次8代CPU的一大更新就是将移动平台高端型号传统的四核升级到了六核,性能当然也就有了大幅度的提升。这里CPU部分就做一个CINEBENCH R15测试,CPU多线程达到了1130cb,相比前两代的产品有大幅度的进步。

这里将i7-8705H与我手边两台i7-6700HQ平台的产品比较了一下,可以非常直观地看到明显的进步。

理论游戏性能部分,主要采用3DMark来测试,因为我手头的911GT和XPS15都有过这几个项目的跑分,因而比较方便对比。Fire Strike测试获得6977分:

单看分数可能不太直观,我绘制了一个图表,与前两代的旗舰比较了一下,可以看到进步还是很明显的:

911Air配备的mGTX1050Ti本身的性能和911GT搭载的上代旗舰级显卡GTX970M的性能表现非常接近,得益于8750H相比6700HQ的性能提升,实际的跑分至少有20%左右的领先幅度。

磁盘的读写性能也直接关系到办公和游戏等日常使用场景的用户体验,因而对其进行单独的测试。使用CDM进行跑分,机械硬盘的成绩如下,顺序读写都突破了100MB/s,达到了目前的主流水准:

SSD部分,顺序读取1456MB/s,顺序写入417MB/s,很显然时NVMe协议的产品,走PCI-E x4总线。这样的成绩,在这个价位段的产品中可以说是比较领先的了。

整机办公性能方面,采用PCMark来测试。PCMark有很多新的版本,不过我还是习惯于用PCmark7来测试,因为以前测试过的老平台都采用PCMark7,结果方便对比,可以看出具体提升了多少。一般来说,2000分以上基本就能保证电脑日常操作不卡顿,而4000分以上就相当流畅了。

911Air的跑分是6277,可以看出相比前两代产品有10%左右的提升。

使用最新版本的鲁大师,跑了一下分。不到28万,在预期之内。

性能测试到此结束,下面介绍游戏测试部分。

用3DMark跑出的分数毕竟只是理论性能,实际的表现还是要通过游戏来验证的。i7-8750H加mGTX1050Ti的配置,足以应对当下的绝大多数网络游戏,我用腾讯的游戏插件测试了一下,基本都可以流畅运行无压力:

真正考验机器的往往是一些单机大作。我选取了育碧今年推出的新作《孤岛惊魂 5》(Far Cry 5) 来进行详细的测试。分辨率选择1080P,画质均选择最高,开启抗锯齿TAA,关闭垂直同步:

这是一款大型的第一人称射击游戏,在玩家中有不错的口碑。

采用了Dunia引擎制作,画面细节精良,因而对处理器和显卡的要求很高。

使用Fraps记录帧数并绘制图表如下,可以看到平均帧数在35帧左右,基本可玩:

也就是说,这套i7-8750H加mGTX1050Ti的配置,在应对Far Cry 5时,可以轻松达到1080P下30帧以上的水平,还是相当不错的。如果将画质稍稍调低,就可以稳定在50帧以上的水平,流畅度就能改善很多。游戏测试到此结束,下面介绍散热测试部分。

散热表现是游戏本非常重要的一个方面,因而这边也单列一个章节。室温30度的情况下,待机温度如下,可以说表现还是不错的:

压力测试则直接采用双烤。采用AIDA64 Extreme Edition中的Stress FPU项目作为CPU烤机部分,采用FurMark作为GPU烤机部分,参数为分辨率,不开启抗锯齿。

双烤20分钟,CPU维持在96度,仍然保持2.7GHz的睿频,功耗也保持在45W,要知道很多其他轻薄本在CPU超过90度后,就会降频到35W甚至是25W,这部分的调校可以说是比较激进的。再看GPU方面,双烤6分钟后撞上温度墙,核心温度达到并维持在85度左右,频率下降到1150MHz水平,距离950MHz的最低频率仍有相当余量。当然,GPU部分也有其他一些厂商会采用超过90度仍然不降频的激进策略(BIOS Thermal Policy),除了散热规格本身的差别之外,这就看各个厂商的定位和取舍了。雷神笔记本的散热调教都是稳妥中略偏激进的,雷神911GT游戏本也是类似的情况。当然,雷神这样的调校,也是有一定底气的,三条共通式热管的设计,为高效的散热打下了坚实的基础。

接着来看一下双烤时机器的表面温度表现,室温27摄氏度,使用激光红外热像仪测试。双烤时主要的热度集中在机身的右侧,也就是CPU和GPU所在的位置。背面同样如此,右侧的出风口温度会更高一些(右图中实际为左侧,因为机身翻转了一下):

来看键盘位置的温度,左侧WASD区域温度为33.6度,右侧达到了47.5度,能明显感觉到温热。散热设计上,主要的发热区域巧妙地避开了WASD区域,对游戏体验的影响较小。

温度最高的是转轴部分的出风口,温度超过50度,而背面的出风口温度也差不多:

双烤下,C面的右侧温度提高了9度,键盘整体上高了3度。最高温度在出风口附近,键盘区域高温在回车键附近。高温区域摸起来有些不适,不过好在热源不在左侧,WASD键和左手掌托温度,与待机时没有什么区别,玩游戏不会受到明显的干扰。散热测试到此结束,下面介绍整机拆解部分。

拆机我认为是笔记本测评中非常重要的一环,通过拆机可以判定机器内部设计与布局的合理性,判断模具的历史沿革,也能对做工用料有一个较为精准的判断。雷神的这台911Air在背面有一个易碎贴,虽然上面说撕毁会影响保修,但是经过与雷神客服的电话确认,这个标签只是对于7天退货和15天换货有作用,撕毁并不影响整机的保修。因而,废话不多说,我就直接开拆了。

官方没有提供Service Manual,不过雷神911Air的模具和光影3/暗影2有些相似,后文模具部分会详细分析,因而可以直接参考它们的拆机指南。其实只要把D面的螺丝全部卸完,然后用拆机撬棒把后盖撬开即可。不过由于总共十几个塑料卡扣围绕整个机身一圈,而且比较紧,还是建议没有拆机经验的新手不要操作了。像我我这样的老司机,当然是轻松完美拆开啦。

机身内部总览,可以看到广达的这套模具,内部的布局还是比较规范整齐的,元件的排布紧凑而合理。另外硬盘上覆盖了一层薄膜,以保护上面的元件。

PC-ABS塑料材质的后盖,巨大的进风口保证了充足的散热风量。可以看到周围一圈有十几个卡扣,这也是需要撬棒才能拆开的原因:

CPU为五相供电,相当充足。GPU三相供电,公版标准设计:

内存采用的是单条8GB的DDR4 2400MHz三星内存,带有额外的可扩展槽位,可自行升级到16GB:

SSD选用的是台湾大厂光宝的CA3-8D128,读写表现不错。

无线网卡是M2接口的英特尔AC9462NGW,自带蓝牙5.0:

电池来自新普,也是雷神常用的供应商,三芯聚合物锂离子电池,容量51.28瓦时:

左侧的音箱单元,体积较大:

右侧的音箱单元体积稍小一些,受限于模具的布局,音箱单元无法做到很大:

这颗是Realtek的SD卡控制芯片:

同样是来自小螃蟹的有线网卡芯片RTL8111H:

网卡芯片旁边的是网桥芯片GST5009B:

GPU边上的三星GDDR5显存,单颗容量1GB:

散热模组特写,双风扇三热管,其中两根热管采用共通的设计,CPU分配两条热管,GPU三根。两根热管用来压8代标压U的散热基本够用了:

散热鳍片的特写,注意出风口做了18个较大的开孔设计,以便于热量快速散开:

从主板上,也可以看出模具的代号是NLA:

从拆解来看,整机的内部布局比较合理,散热模组的用料厚道。整机拆解到此结束,下面介绍散热模块评价部分。

【10】模具分析与点评

作为有多年从业经历的老司机,我在拆开机壳的第一时间,就感觉到这个模具有一点眼熟。这款模具是广达为雷神打造的私模,代号NLA。我发现其与光影3和更早的暗影2的模具有些类似。这是光影3的Service Manual里的爆炸图:

如果上图不够直观的话,直接看拆机图会比较明显,下图是雷神911Air的拆机图:

接着来看光影3的拆机图,广达的模具代号是G75A,可以发现两者的布局比较类似。雷神911Air的NLA模具,在G75A的基础上,为散热优化做出了很多改进:增加了一条热管,同时铰链的设计也有所不同,改善了光影3热风吹屏幕的问题。同时进出风口的面积更大了,风扇也做了强化。简单来说,NLA可以看作是G75A的魔改强化版。

更早的暗影2也是采用了类似的设计,广达的模具代号是G35A。转轴铰链外置,布局上也有所不同,但是还是可以明显看出G35A和G75A的同源性,G75A是从G35A发展而来的。

目前最新的光影4,采用的是仁宝的模具。与广达的模具不再有任何技术上的继承性:

那么采用了仁宝模具的光影4,在散热上表现是否会更加出色呢?答案是未必如此。散热设计主要看铜管粗细和鳍片大小,另外还有风扇风量、风道设计、铜管热阻等多个变量来决定的。光影4的布局和风道虽然不错,但是热管偏细一些,要照顾整个核心和供电的散热还是比较吃力的,所以从网上的测试数据来看,光影4在双烤时,CPU出现了明显的降频,只能达到2.3GHz,25W功率。当然,这也和整机的散热策略调校有关,光影4的GPU在双烤时超过90度仍不降频,这种激进的策略显然是为了优先保证显卡的性能发挥。至于各家的Thermal Policy制定得是否合理,就见仁见智了。

对比之下,暗影4的广达模具,不论是热管的数量和尺寸,还是风扇的直径等,都比光影4要加强了不少,使得双烤的数据也正常了不少。这就说明散热的表现更多的还是取决于热管鳍片和风扇的用料,以及风道的设计等。当然暗影4不论是从外观厚度还是重量来看,都不能算是轻薄游戏本了。

911Air所采用的代号为NLA的广达私模,其实是基于光影3的G75A的魔改版本。这个模具有一个优势,就是发热元件主要集中在右侧,左侧的表面温度很低,游戏时的体验不错。不过光影3的G75A模具,由于转轴处的设计问题,导致热风直接吹屏幕,用户使用评价一般。而雷神911Air这次采用的NLA模具,可以说从很多方面都做出了优化改进,例如转轴处做了重新的设计,新增了十八个大面积的开孔保证散热。同时增加了一条额外的热管,风扇也做了增强。可以说将整个平台的潜力都挖掘出来了。

模具的点评到此结束,下面介绍机器的续航和噪音水平。

说续航前先简单说一下整机的噪音表现吧,双烤的时候,噪音大约50分贝不到,属于完全可以接受的范围内,相比911GT的噪音来说小了不少。

续航方面,采用PCMark8测试,电池模式设置为平衡,屏幕亮度调至40%,关闭键盘背光,外接设备方面只保留一个USB鼠标。先使用Home conventional模式测试,结果如下:

两个多小时的测试结果,结合其51Wh的大容量电池来说,只能说是比较一般,还有一定的优化空间。

再借用一张雷神官方的宣传图,来一波总结吧。

1. 微边框全面屏,工业设计和外观做工出色

2. 轻薄的商务风的游戏本,类似产品市场上非常少见

3. 模具成熟,散热表现不错,双烤CPU不降频全功率运行

1. 结合售价没有明显槽点,屏幕和音箱等外设还有一定提升空间

2. 续航一般,还有一定的优化空间

3. Type-C接口如果能支持雷电就更完美了

雷神911Air是一款顺应潮流推出的微边框全面屏轻薄游戏本,外观设计出色,偏向商务风格,同时性能和散热表现用来应付绝大多数游戏都没有问题。内部的布局合理,用料厚道,结合其售价而言,槽点真的不多。各方面表现比较均衡,没有特别明显的短板,称其为“水桶本”也不为过。

微边框轻薄游戏本在去年还十分少见,主流品牌的产品只有一款技嘉的Aero15。而到了2018年,推出微边框轻薄游戏本越来越多。目前市场上的微边框轻薄游戏本,如雷蛇、ROG,包括技嘉的Aero15,售价普遍都在万元以上,有些甚至超过2万元,雷神的这款产品相比之下性价比凸显。即使是相比同价位的光影4,911Air在散热表现上也有一定优势,通过强化的散热,使得双烤下CPU可以满功率不降频运行。目前这类高性价比的商务风格游戏本在市场上还是比较稀缺的,雷神的911Air可以说是其中一个非常不错的选择。

}

一、前言:NVIDIA革命性跨越 显卡又热闹起来了

作为GPU显卡行业的领头羊,NVIDIA的新产品发布节奏多年来一直非常稳,而且每一代都有极大的创新和提升(完全不知牙膏味儿),产品线布局十分丰富,生态系统合作也是有着厚实的积累相当完备。

在显卡的江湖里,NVIDIA虽然说不上呼风唤雨,但始终也都是首屈一指的,GeForce更是几乎已经成了游戏卡的代名词。

2017年5月,我们迎来了Pascal帕斯卡架构的GeForce GTX 10系列,不过当时恐怕谁都不会想到,帕斯卡家族的命会这么长,而新一代让我们苦苦等待了这么久。

最近几代产品,NVIDIA都会选择当年的3-6月份春天或春夏之交来发布,一般在3月份的GTC图形技术大会上首次披露,但今年非常特殊,一直拖到了9月份,比往年晚了几乎半年。

更令人称奇的是,NVIDIA这一次保密工作做的极好,直到发布前,我们都不知道新卡的架构是Volta伏特、Ampere安培还是Turing图灵,也不知道新卡的命名是GTX 10系列还是GTX 20系列,结果最终是RTX 20系列。

出现这种局面,最主要的原因是这一代从架构技术到产品体系都发生了翻天覆地的变化,而研发全新一代架构、完善全新技术特性,都是需要花费无数精力、金钱和时间的(想想AMD Zen憋了多久才出来再想想Intel酷睿老本吃了多少年)。

按照NVIDIA的说法,早在10年前就在设计和研发图灵架构了(当然当时应该没这个代号),主要是光线追踪方面,因为在此之前,光线追踪只能用于影视渲染,谁也不敢想象它能在游戏里实时呈现。

最终,NVIDIA创造奇迹,为PC游戏带来了实时光线追踪(即便是有条件的),也难怪黄仁勋骄傲地宣称图灵架构是2006年引入CUDA统一着色核心以来最大的革命。

而另一方面不得不面对的一个现实就是,显卡市场已经沉闷太久了,尤其是在电竞火热朝的形势下,显卡却迟迟没有跟上。

作为市面上仅有的两大GPU巨头之一,AMD近些年全力投入Zen CPU架构,虽然硕果累累,但也导致GPU方面进展缓慢,Polaris北极星架构的RX 400/500系列只能在中低端市场混,Vega织女星架构的RX Vega系列在高端市场又不具备足够的竞争力。

这种形势下,对手很容易懈怠,反正没什么压力,但幸运的是,NVIDIA并没有任性挤牙膏,反而奉上了一道更美味的大餐:全新架构、实时光线追踪、AI人工智能、GDDR6显存等都让人激动不已,而且第一次首发就奉上了三款新卡。

长久的等待终于值了,整个显卡市场也再次热闹纷呈起来。

接下来,我们就会探析一下这个革命性的Turing架构,以及全新的RTX 2080 Ti、RTX 2080两款高端型号到底表现如何。

二、架构解析之全新内核体系

既然是一个全新设计的架构,我们就要好好看一看这个以计算机科学之父、人工智能之父艾伦·麦席森·图灵(Alan Mathison Turing)命名的Turing图灵新架构到底有哪些过人之处,不过硬件架构总是伴随各种高深晦涩的技术名词、技术原理,即便专业人士也得好好研究才行,所以这里我们仅从高级层面,介绍一下新架构的大致设计、技术概况,以及能带来的实际好处。

在以往,NVIDIA为专业级计算卡、消费级游戏卡设计的都是统一架构,只是具体内部模块布局、技术支持、核心大小不同。好处是可以统一开发,降低成本,坏处是缺乏针对性,技术资源要么浪费要么不够。

这一次,NVIDIA选择了分而治之。针对高性能计算、图形渲染、人工智能、深度学习等专业应用的是Volta伏特架构,目前只有一个超大核心GV100,是迄今为止GPU历史上最大的核心,台积电12nm工艺制造,集成多达210亿个晶体管,核心面积达815平方毫米,妥妥的怪物级核弹。

而针对游戏显卡的就是Turing图灵架构,也是台积电12nm(有说法称最初计划使用三星10nm),其中最大的核心TU102集成189亿个晶体管,核心面积754平方毫米,是仅次于GV100的史上第二大GPU核心。

相比上代Pascal帕斯卡家族的大核心GP102,它的晶体管数量增加了55%,面积则增大了60%,甚至是次级新核心TU104都超越了GF102,拥有136亿个晶体管、545平方毫米面积。

新架构核心之所以如此庞大,除了CUDA核心规模继续增大、升级Shading着色渲染之外,更关键的是RT Core光线追踪核心、Tensor Core人工智能核心的加入,这也是新架构革命性变化的根本支撑。

拥有全新着色性能的SM CUDA核心阵列、支持高达每秒100亿条光线计算的RT光线追踪核心、为实时游戏画面导入AI人工智能加速的Tensor核心,三者就构成了图灵架构的三大支柱,各自有不同分工又互相协作,共同实现新的游戏渲染画面。

同时,NVIDIA强调新架构的单个CUDA核心着色渲染性能是帕斯卡架构的1.5倍,第一次可以在4K分辨率、HDR开启的情况下,提供流畅的游戏体验,真正开启4K时代。

按照NVIDIA的说法,RTX 2080就能基本实现4K分辨率下60FPS的游戏帧率,RTX 2080 Ti更是能够达到70-80FPS。当然具体还要看游戏需求,以及游戏设置,特别是某些高要求的技术特性,光线追踪打开后别说4K了,就连1080p就比较吃力。

图灵架构的基本组成单元之一还是CUDA核心与SM流处理器阵列,这也是2006年的G80以来NVIDIA GPU的基石。

事实上,图灵架构的SM阵列也融合了伏特架构的不少特性,相比帕斯卡架构差别还是挺大的,比如每一组TPC里的SM阵列由一个增至两个,同时SM内部的组成方式也截然不同。

帕斯卡架构每个SM阵列集成128个FP32浮点单元,图灵架构则改成了2个FP64双精度浮点单元、64个FP32单精度浮点单元、64个INT32整数单元、8个Tensor核心、一个RT核心。支持浮点和整数并发操作,并有新的执行数据路径,类似伏特架构汇总的独立线程调度。

按照NVIDIA的统计,每执行100个浮点指令,平均会有36个整数指令,两种指令可以并发执行。

如此一来,帕斯卡架构的整数和浮点计算就可以分配得更加均衡,并与新的Tensor、RT核心相配合,更合理、高效地完成各种负载。

整体而言,图灵核心的CUDA阵列可以每秒执行14万亿次FP32浮点操作、14万亿次INT32整数操作。

缓存架构也彻底变化,由两个载入/存储单元牵头,一级缓存和共享缓存整合在一起,而且容量灵活可变,可以是64KB+32KB,也可以是32KB+64KB,大大降低了延迟,带宽也翻了一番。

二级缓存容量则从3MB翻倍到6MB。

NVIDIA宣称,新架构每个CUDA核心的着色渲染性能比上代平均提升50%,部分游戏可达70%左右,VRMark虚拟现实测试成绩甚至翻了一番还多。

当然这只是基础理论上的数字,实际性能还要看其他部分和整体指标。

图灵架构还首发搭配新一代GDDR6显存,目前业界最快,等效频率高达14GHz,搭配352-bit位宽可以带来616GB/s的惊人带宽,相比于GTX 1080 Ti在位宽不变的情况下提升了27%,也比用了2048-bit HBM2高带宽显存的AMD RX Vega 64高了27%。

而且关键是,GDDR6的成本比HBM2低得多。

另外,NVIDIA还对新显存进行了各种优化,信号窜扰降低了40%,更利于运行稳定和进一步超频。

三、架构解析之RT核心、光线追踪

图灵架构和RTX 20系列的最大亮点和卖点当然是——游戏实时光线追踪!

从第一颗GPU NVIDIA GeForce 256诞生至今已经整整19年,GPU规模和技术越来越发达,但是最底层的图形渲染技术其实几乎一成不变,始终都是光栅化渲染,通过计算三角形和多边形来获得画面输出,好处是资源消耗容易控制,坏处就是距离真实画面相差甚远,甚至永远不可能接近。

光线追踪(Ray Tracing)技术则堪称图形界的“圣杯”,简单地说就是在图形渲染过程中实时跟踪物体和环境的光线,准确进行光线反射和折射、全局照明、物理阴影的绘制,可以带来近乎百分之百真实的渲染画面,尤其是光影效果。

光线追踪技术其实并不新鲜,1969年的时候在IBM工作的Arthur Appel就提出了这种概念,当时叫做Ray Casting,距今已经整整半个世纪。

但是,光线追踪的算法非常简单,稍有计算机图形只是的人都能理解,关键在于如何优化提高效率,因为它需要的计算量太过庞大,想想要实时计算场景中无数光线每时每刻的各种传播,那是多么恐怖,以前的GPU根本无力承担实时计算。

因此直到2006年迪士尼的《汽车总动员》(Cars),影视行业才开始使用光线追踪渲染,如今大多数的照片级渲染系统多时基于光线追踪的,但背后都是超大规模的计算机群在吃撑,一帧画面往往都要渲染几个小时。

虽然大家都在努力,但就在一个月前,如果说普通显卡可以在游戏里实现光线追踪(尽管是有条件的),相信绝大多数人都不会相信,但是NVIDIA的图灵做到了。

NVIDIA在图灵架构中集成了最多72个RT Core核心,每个SM单元一个,专门用来服务光线追踪运算,等于一个特殊的专用单元,由硬件加速取代软件模拟,效率自然要比CUDA这种通用单元高很多,就像GPU做并行计算比CPU强得多。

简单来说,图灵架构的光线追踪运算步骤是这样的:着色器单元首先发出光线探测请求,RT Core核心就开始完全接管下边的工作,并分为两个过程,其中包围盒求交评估单元(Box Intersection Evaluators)进行包围盒的获取和解码,并进行求交测试,得到子包围盒或者三角形。

如果是子包围盒,就返回重新执行,重复刚才的步骤。如果是三角形,那就交给三角形求交评估单元(Triangle Intersection Evaluators),做下一步的求交测试,直到得到最终结果并输出给着色器,进行最终渲染。

看懵了对吧?懵了就对了……

比如渲染对象是一只兔子,要几算一条光线和兔子本身的交互,就把兔子所在空间划分成N个包围盒,计算光线和哪一个包围盒相交,是的话就再把这个包围盒继续划分成N个更小的包围盒,再次计算相交,如此反复,一直找到和光线相交的三角形所在的包围盒,再对这个三角形进行最终的渲染。

BVH算法可以大大减少计算每一条光线最近相交点所需要遍历的三角形数量,而且只需要进行一次就能给所有光线使用,大大提高了执行效率。

性能方面,RTX 2080 Ti在精简了四个只有68个RT核心的情况下,每秒钟可以计算超过100亿条光线,大约等于100TFlops(每秒1000亿次浮点运算)。

而上代GTX 1080 Ti虽然也能执行光线追踪,但因为没有专用单元和算法,效率只有RTX 2080 Ti的大约十分之一,不足以实时用于游戏。

接下来欣赏欣赏NVIDIA RTX光线追踪的效果和对比:

目前支持NVIDIA光线追踪技术的游戏有11款(和首发时相比没变),分别是:

不过,RTX 20系列上市初期,可以玩的光线追踪游戏暂时还是零,比如《古墓丽影:暗影》首发不支持得后期打补丁,《战地5》则跳票了。

四、架构解析之Tensor核心、AI加速

NVIDIA在伏特架构上引入了全新的专用处理模块Tensor Core,也就是张量计算核心,重点用来支持深度学习、高性能计算(也是晶体管大户)。

图灵架构则是在游戏卡上引入Tensor Core,同时针对游戏图形应用做了大量的调整优化,尤其是浮点精度方面。

Tensor的意思是张量,不同于我们常见的标量(零维)、矢量(一维)、矩阵(三维),拥有三维或者更高维度,简单地说就是一个数据容器,可以包含多个维度的数据。

现在火热的深度学习,就运用了超大规模的数据运算,其中就经常会用到矩阵融合乘加(FMA)运算,Tensor核心就是为这种矩阵数学运算专门服务的。

它可以对两个4×4 FP16浮点矩阵进行相乘操作,然后将结果加入到另一个4×4 FP16/FP32浮点矩阵中,最终输出新的4×4 FP16/FP32矩阵,这叫做混合精度数学运算,因为输入矩阵是半精度,结果则可以达到全精度。

每个时钟周期内,图灵架构的Tensor核心可以执行64个FMA运算,从而大大加速矩阵运算,可用于新的神经实时图形渲染、深度学习训练和推理。

NVIDIA把看起来高深莫测的Tensor核心放到游戏卡里,显然不是做专业运算的,其深度学习能力也是为游戏服务的,结合新的神经图形框架(Neural Graphics Framework),简称NGX,可以在游戏中实现DLSS深度学习超采样抗锯齿、AI Super Rez超级分辨率、AI Slow-Mo慢动作、AI InPainting等等。

这些计算繁琐、资源消耗巨大的操作,在以往也可以实现,但会付出很大的代价,效果也不尽如人意,如今有了新的Tensor核心,就可以建立属于GPU核心自己的DNN深度神经网络,将AI融入游戏。

NVIDIA已经向游戏引擎开放NGX API,将其融入其中,实现底层加速。

另外和很多AI应用类似,NVIDIA GeForce Experience软件的作用也非常重要,它会自动匹配显卡型号,从云端训练的AI模型哪里下载相应的NGX软件包,并定期更新,达到越用越好、甚至是因人而异的效果。

AI Super Rez:有点类似高清视频中常见的Up Scaling,但是引入了人工智能和深度学习之后,可以实现近乎“无损放大”,原来的画面分辨率放大2倍、4倍乃至8倍,仍然清晰锐利。

AI Slow-Mo:超级慢动作我们并不陌生,现在不少高端手机都支持240FPS、480FPS乃至是960FPS的慢动作视频录制。图灵架构可以对普通的30FPS视频进行智能插帧运算,得到240FPS/480FPS的慢动作视频,也就是说你不需要专门的高帧率摄像头,就可以获得很流畅的慢动作视频。

AI InPainting:可以抹掉画面中不需要的内容,也可以智能补全缺失的内容,完全超越PS抠图的存在。它同样来自现实中大量真实世界图片的训练推理。

其实,慢动作和修图这两项在之前就曾有相关报道,显然NVIDIA在硬件、算法两个方面都实现了真正的突破。

接下来就是重中之重的DLSS(深度学习超采样抗锯齿)。

我们知道,传统的光栅化图形渲染画面会存在各总各样的锯齿(狗牙),所以GPU厂商都会在后期处理中加入各种各样的AA抗锯齿技术,但传统抗锯齿都是由GPU去运算的,效果参差不齐不说,最关键的是会消耗大量的GPU资源,开启之后让游戏卡得没法玩再正常不过了。

DLSS深度采样超采样抗锯齿则和传统抗锯齿技术走了一条完全不同的路,它是在NVIDIA超级计算机上进行训练,而不再消耗GPU本身的资源。

针对每一款游戏,NVIDIA会在运算建立对应的训练神经网络,收集大量的64x超采样数据,对像素点进行64次偏移着色合成输出,理论上可以获得近乎完美的抗锯齿平滑效果,同时还会对比和普通渲染画面之间的差异,调整网络权重,反复迭代,最后获得更合理的抗锯齿画面效果,还可以避免传统TAA时间抗锯齿的运动模糊等问题。

云端训练完成后,NVIDIA会通过GFE软件将成果分发给玩家,再用到游戏中,而且随着游戏运行得越多,DLSS学习效果就会越来越优化,甚至每个玩家都可以得到属于自己的不同效果。

当然了,这也意味着NVIDIA需要和每一款游戏或者每一个游戏引擎合作,去进行专门的优化,还是相当费时费力的,不过考虑到NVIDIA在游戏行业广泛深入的合作关系,这方面倒不必担心。

尤其是随着合作优化的深入,NVIDIA完全可以建立起属于自己的技术壁垒,让对手望尘莫及,进一步带动大量玩家忠实地跟随NVIDIA。

以上是2x DLSS与传统64x SSAA、TAA的效果对比,大家可以仔细观察一下画面细节。

更神奇的是,DLSS因为基本不需要消耗GPU本地资源,因此可以大大释放GPU性能,让其专心渲染游戏,提升性能。

游戏支持方面也不是啥大事儿,RTX 20系列发布之初就有16款游戏(PPT上写错了),现在产品还没完全上市就已经增加到25款。

这其中有5款游戏同时支持RTX光线追踪和DLSS抗锯齿技术,分别是《原子之心》、《逆水寒》、《剑网3》、《机甲战士5:雇佣兵》、《古墓丽影:暗影》。

五、架构解析之混合渲染、高级渲染

图灵架构虽然引入了光线追踪,但以现在的GPU性能和技术算法,显然不可能把一切渲染都交给光线追踪,传统的光栅化渲染依然离不开。

因此,NVIDIA在图灵架构中使用了混合渲染流水线(Hybrid Rendering Pipeline),针对不同的工作负载,分别使用CUDA核心的光栅化渲染、RT核心的光线追踪渲染、Tensor核心的计算渲染的一种或多种组合,获得渲染效率的最大化。

当然,在典型的混合渲染场景中,也不会同时用到三种渲染方式。

如此一来,如何衡量图灵架构的实际渲染性能,就不能用以前的算法了,而要根据三种不同渲染方式的使用程度,综合衡量。

以上就是在一个典型的渲染场景中,图灵架构各种渲染方式的组合分配,一般而言80%的时间里使用着色器FP32浮点运算、28%的时间使用着色器INT32整数运算、40%的时间使用RT核心、20%的时间使用Tensor核心FP16浮点运算。

比如RTX 2080 Ti,结合各个部分的峰值性能,最终的渲染性能就是:

NVIDIA给这个结果自定义了一个单位RTX-OPS,可以理解为RTX显卡每秒钟能执行的操作数,也就是780亿次。

与此同时,图灵架构也引入了多种新的、更高级的Shade着色渲染技术。

比如网格渲染(Mesh Shading):面对复杂、庞大的场景,不再逐一计算每一个物体的所有细节,而是由GPU灵活地计算物体细节等级(LOD),踢出被遮挡的,削弱低细节的,再加上传统曲面细分技术,更高效地生成真正实际需要的三角形,也能大大减轻CPU负担。

可变率着色(Variable Rate Shading):按照场景中的复杂度不同,分区域动态调整着色速率和资源分配,目的还是减轻GPU负担、避免不必要的资源浪费,最终有利于提升渲染效率、游戏帧率。

可变速率着色渲染有很多应用场景,比如内容适应性着色(CAS)、动作适应性着色(MAS)、注视点选择性渲染、镜头优化。就不一一展开了。

六、架构解析之视频、输出、虚拟现实

作为显卡,除了渲染游戏画面,视频编解码、输出显示也都是基础工作,而且这一代NVIDIA还特别强化了对VR虚拟现实的支持。

根据NVIDIA的数据,图灵架构显卡进行视频直播时,1080p分辨率6K码率、4K分辨率40K码率的CPU占用率都只需1%,掉帧率也是1%甚至为零,相比之下帕斯卡就有点惨不忍睹了。

VirtualLink标准由NVIDIA、Oculus、Valve、AMD/微软牵头制定,是一种开放的行业标准,可以让VR头显摆脱多条线缆的束缚,只需一根高速USB Type-C数据线,就可以直连显卡和VR头显。

而现在的VR头显,比如说HTC Vive,就需要HDMI、USB、电源三条线。

七、架构解析之三大核心与型号

图灵家族除了架构本身变化巨大,产品体系也和以往明显不同,首发一口气就是三款型号RTX 2080 Ti、RTX 2080、RTX 2070,而且分别对应三个不同核心TU102、TU104、TUF106,而以往的x80、x70都是共享一个核心。

具体原因不详,可能是新一代核心太大,x70直接用大核心阉割成本比较高,还不如再造一个省钱的小核心。

这就是最顶级的TU102核心,186亿个晶体管、754平方毫米面积确实不是盖的。

目前只有Quadro RTX 8000用了完整的TUF102,可能是初期良品率不足,优先供给专业市场,也可能是功耗和发热在游戏卡上不好控制,还有可能是留一手……

RTX 2080 Ti的核心频率基础为1350MHz,加速频率FE公版做到了1635MHz,非公版则规定是1545MHz,当然大家可以随意超频。

TU104核心,136亿个晶体管,545平方毫米,比帕斯卡家族的大核心GP102都要大一圈。

TU106核心,108亿个晶体管,445平方毫米,相比GP102也只是分别差了10%、6%,更可见图灵家族的庞大。

图灵家族三大核心与帕斯卡家族大核心GP102对比。

八、图赏:16相数字供电 售价万元的双风扇“煤气灶”

公版RTX 2080显卡的外观有了巨大的变化,放弃以往的涡轮散热,转而采用开放式双风扇设计,加上银色金属机身,看起来像极了“煤气灶”。

一块巨大的全覆银色金属背板,背板厚度达到了3mm,具有良好的散热效果。

8+6PIN的供电输入,可以提供350W的输入功率。

抛弃了传统的SLI接口,采用了第二代NVIDIA NVLink高速互联方案,能提供100GB/s的双向带宽,并且大大降低了延迟。

供电部分采用了8相核心+2相显存的供电方案,并且大量采用了高端的钽电容,供电规模及用料远远超过了公版的GTX 1080(6+1相供电)。

散热器可以完美贴合PCB上每一个发热的元件,显卡不会出现某个部分温度过高的情况。

与RTX 2080一样,RTX 2080 Ti也同样舍弃了以往的涡轮散热,转而采用双风扇设计,看上去就是一个价值一万元的煤气灶。

银色全覆金属背板,也同样是和RTX 2080一样,没有什么区别。

双8Pin供电,最高能提供400W的收入功率。

同样采用了第二代NVIDIA NVLink高速互联方案。

供电部分则采用了14+2一共16相供电方案,顶级非公都很难达到这样的规模,看来售价万元的显卡在用料方面果真是舍得下本钱。

散热器可以完美贴合PCB上每一个发热的元件,显卡不会出现某个部分温度过高的情况。

i7-8086K基于八代酷睿Coffee Lake构架,14++纳米工艺制造,核心面积约150平方毫米,拥有六个核心十二线程,睿频加速达5GHz,这是Intel史上第一颗默认能跑到5GHz频率的处理器。

为了尽可能的发挥RTX 2080 Ti强大的性能,我们将此U超频到了5.2GHz。

主板选用了华硕MAXIMUS X HERO,拥有高达10相超合金数字供电,超频能力在Z370主板中属于顶级水准。BIOS已经更新到最新版本。

机箱采用了酷冷至尊顶级的H500M型号,其前置双200mm风扇以及大面积的金属散热孔 能够将机箱内部热量快速排出,有效降低电源和硬盘的温度。

机箱背部的金属铠甲将背线打理的井井有条,看上去十分干净。

我们采用的显示器是LG 38UC99,其支持的最高分辨率为,测试中的4K分辨率就是指的这个。

MasterWatt Maker 1200采用的是全模组设计,不同功能的模组接口都有着不同的外形,以防止玩家误接。

为了压制5.2GHz的i7-8086K,散热器采用了九州风神顶级的船长280一体水冷散热器。

十、1080P分辨率测试:RTX 2080碾压帕斯卡全系 处理器开始瓶颈

Turing的核心构架完全不同于以往的产品,从Kepler到Maxwell到再到Pascal,每一个CUDA核心都就是由FP32单元构成。

而Turing每一个CUDA核心除了有一个FP32的单精度浮点单元之外,还有一个INT32的单精度整数单元。每8个CUDA单元搭配一个TENSOR核心,64个CUDA CORE+8个TENSOR CORE再加上一个RT CORE构成一组SM(其实每一组SM中还有2个FP64双精度浮点单元,只是下图并没有标示出来)。

根据NVIDIA的说法,INT32可以为每个CUDA核心带来36%的性能提升,再加上L1缓存带宽的成本增加以及降低延迟,最终图灵每个CUDA核心相比帕斯卡能有50%的性能提升。

图灵是否真如所说还是需要具体的测试来验证,下面正式进入游戏测试环节。

《GTA V》于2015年登陆PC平台,全平台的销量已经超过了1亿,算是 10年来最成功的单机大作,现在依然人气不减。

画质手动调为最高特效,开启MSAA 2X以及NVIDIA TXAA,分辨率为,显存占用3422M。

《刺客信条:起源》是由育碧制作并发行的《刺客信条》系列历史上规模最大的一个。本作采用开放地图沙盒玩法,游戏几乎呈现了整个古埃及王国,画质与风景无人能出其右。

测试时开启极高画质,分辨率为。

《孤岛惊魂5》是一款由育碧(Ubisoft)制作的第一人称射击游戏。 已于2018年3月正式发售。

画面设置为 FXAA、DX12+默认非常高画质。

GTX980Ti在进行此项测试时,若选择DX12模式,帧数会爆降30%,因此该卡是以DX11进行的游戏测试。

《古墓丽影:暗影》是一款由Eidos Montreal工作室制作的动作冒险游戏, 本作是重启版《古墓丽影》的系列第三作,已于2018年9月15日正式发售。该游戏在后续的补丁中将提供对RTX系列显卡DLSS与光线追踪技术的支持。

画面设置为 FXAA、DX12+手动最高画质。

虽然已经发售了一年之久,《绝地求生》依然是目前最火的PC游戏,经过蓝洞工作室数次优化,现在已经能较为完善的支持6核处理器。

由于本游戏没有提供测试程序,我们选在训练场中选择了一块无人场地,反复进行多次帧率测试,确认每次得到的结果差距都在2%以内。

《奇点灰烬》作为一个老牌的PC游戏测试项目,目前已经优化了8核处理器支持,它对处理器和显卡的要求都非常高。

测试时选择Crazy画质、DX12模式、分辨率为1080P

《杀出重围:人类分裂》是Square Enix为PS4开发的次世代FPS类游戏,该游戏是目前所测试游戏中对显卡性能要求最高的一款。测试时画质

《生化危机7》是卡普空制作的生存恐怖类游戏《生化危机》数字编号系列第八部,有着全新的恐怖求生体验,玩家的视觉切换为更骇人的虚拟实境“隔离视觉”模式,写实感提升至一个全新的境界。

游戏的测试方式为从开局下车地点走到教堂门口,记录20秒帧数。

《守望先锋》暴雪娱乐第一次涉足FPS领域的作品,2016年曾经火爆全球,影响力一度超过了LOL,即便是现在仍然还有相当数量的玩家活跃在游戏中。

由于游戏没有提供测试程序,我们选在训练关卡中从出生地一直向前奔跑,用Fraps记录20秒帧数。测试时打开10

《守望先锋》游戏内锁死了300帧,所以RTX 2080 Ti最多也就能跑到300帧,相比GTX 1080 Ti领先了55帧。

《文明6》是由Firaxis Games开发,2K Games负责发行的策略类游戏,该游戏是游戏设计师席德·梅尔创作的《文明》系列的第6部。

测试时选择最高画质,并将所有材质分辨率调到最高。

《文明6》也是一款几度需求CPU性能的游戏,除了RX580之外,其他几款显卡帧数都没有多少区别,最强的RTX 2080 Ti也就比GTX980Ti快了不到5%。

《巫师3》为《巫师》系列游戏作品的第三部,也是杰洛特冒险的终曲。层获第33届金摇杆奖最佳剧情、最佳视觉设计、最佳游戏时刻,更获得IGN 2015年度最佳游戏。

游戏内没有提供测试程序,测试场景选在一处山坡,测试时骑马直线奔驰,用Fraps记录20秒帧数。

十一、2K分辨率测试:新构架威力进一步显现

本来2K分辨率测试不在计划之内,考虑到现在不少玩家都用上2K分辨率显示器,临时决定将此分辨率加入测试。

由于文明6过于依赖CPU性能,GTX1070以上的显卡都没有跑出差距,在计算性能百分比时并未加入此游戏的数据。

麦克斯韦年代的旗舰GTX980Ti与GTX1070的性能进一步拉开,仅能达到后者86%的性能。

十二、4K分辨率测试:高端显卡的主战场 图灵得以一展雄风

对于RTX 2080 Ti这种级别的显卡而言,只有4K分辨率才能真正榨干它全部的性能,低分辨下进行测试时,由于CPU本身在渲染建模方面无法跑出太高帧率,RTX 2080 Ti的性能难以完全发挥。

我们采用的显示器是LG 38UC99,测试的分辨率为,与标准的的4K分辨率有些许差异。测试时的画面设置与1080P相同,不再一一赘述。

《最终幻想15》是Square Enix史上最昂贵的游戏开发项目,历时10年的开发周期。本作是《最终幻想》系列中最接近 “水晶的神话”的核心内容的一部,向玩家呈现了一个广大而又开放的世界

在4K分辨率下,GTX 1080 Ti以下的显卡终于扛不住了,各种差距开始拉开,然而RTX 2080与RTX 2080 Ti性能仍未完全发挥,帧率与1080P分辨率完全一样。

4K分辨率的测试数据汇总如下:

由于文明6过于依赖CPU性能,3DMark Fire Strike Ultra的跑分无法反应图灵性能,在计算性能百分比时并未加入这2个项目的测试数据。

VEGA64的表现甚至不如2K分辨率,对GTX 1080的领先优势只剩下3%。

十三、CPU需求测试:4核4线程处理器无法胜任 i7-7700K老当益壮

在7代酷睿年代,很多玩家觉得4核i5与顶级的4核i7处理器相比,在单机游戏上面方面没有多少差异,为此我们收集了7款主流的CPU逐一测试,方便玩家了解顶级显卡对CPU性能的需求。

因为AMD平台无法支持4000MHz频率内存条,测试时内存统一采用3200MHz频率

以下是分辨率下7款CPU的测试成绩汇总:

在1080P分辨率下,各种档次的处理器跑出来的游戏帧数差别明显,特别是没有超线程功能里处理器严重限制了RTX 2080 Ti的性能。在多款游戏中,R5 1300X与i3-8100与顶级处理器之间都有超过50%的差距。

I7-7700K老当益壮,游戏性能与默频的8086K几乎完全一样,如果手上还有7700K的同学,想要购买RTX 2080级别的显卡,可以不用升级处理器。4核4线程的R3 1300X和I3-8100完全无法发挥RTX 2080 Ti的性能。超频到5.2GHz的8086K比默频时提升了6%的帧数。

以下是分辨率下7款CPU的测试成绩汇总:

4K分辨率最高特效下,压力都在显卡这一边,除了《奇点灰烬》和《文明6》这2款比较吃CPU的游戏之外,其他游戏游戏的测试中,各款CPU的帧数差距并没有很大。

在4K分辨率下,8086K、7700K、2700X、2600在处于同一档次,6核6线程的I5-8400与前面几款产品有6%的差距,R3 1300X和I3-8100这2款处理器落后的幅度没有1080P那么明显,但也有10%以上的差距。

分别测试2133MHz单通道、2133MHz双通道、4000MHz双通道三种状态下,RTX 2080 Ti的游戏帧数,内存容量16GB。测试数据如下:

由上表可以看出,2133MHz单通道已经完全不能满足RTX 2080 Ti的需求,比双通道时普遍慢了20%左右,特别是在《奇点灰烬》、《古墓丽影10》、《古墓丽影11》和《孤岛惊魂5》这几个游戏中更是大幅度落后。

在使用4000MHz双通道内存后,相比2133MHz双通道,还能额外增加8%的游戏性能。

这2年内存价格居高不下,很多同学在购机时往往选择单条8GB内存。如果想要发挥高端显卡的实力,双通道内存是基本要求,必要时可以选择高频内存条。

十四、超频测试:核心几无空间 显存轻松15GHz

从帕斯卡开始,NVIDIA的BOOST 3.0技术就能在TDP允许的范围内最大限度提升核心频率,基础频率仅有1.5GHz的GTX1070实际游戏中运行频率经常能够超过2GHz。BOOST 3.O已经充分发挥了显卡的潜力,导致留给玩家的超频空间非常之小,一般也就能超过几十MHz而已了。

到了图灵时代,超频会不会有所好转呢?带着这个疑问,我们对2张图灵显卡的超频能力做了简要尝试。

首先是RTX 2080,这张显卡默认TDP为225W,我们先将它拉到272W。

然后开始尝试提升核心频率,悲催的是,经过反复测试,在不加电压的情况下,最高只能将核心频率增加可怜的65MHz,再加一点点运行游戏时都会无响应。

不过好在美光显存超频能力不错,从14GHz拉到 15GHz都能稳定运行,此时显卡的带宽达到了480GB/s,与GTX 1080 Ti持平。

超频之后3DMark Time Spy图形分数从默认的10838增加到了11632,增长了800分,提升幅度7.3%,核心频率最高能到2070MHz,大多数时候维持在2000MHz上下。

同样的事情也发生在RTX 2080 Ti身上,其默认TDP为260W,我们将它拉到301W。然后在调整核心频率的时候,也只能增加65MHz,显存频率则能从14GHz超至15GHz。

十五、功耗温度测试:能耗比提升40%

分别测试待机与Furmark烤机功耗,测试所用的电源为酷冷至尊MasterWatt Maker1200W铂金电源。

图灵的功耗表现再一次给了我们惊喜,RTX 2080烤机时整机功耗只有305W,仅仅比GTX 1080高出了20W的功耗,却有着40%的性能提升。与GTX 1080 Ti相比,功耗低了35W,性能则强了15%。

同样的事情也发生在RTX 2080 Ti身上,其烤机功耗仅有330W。相比GTX 1080 Ti增加了768个流处理器,核心与显存频率都有所增加的情况下,功耗依然降低了10W,而性能则是强了40%以上。

对比AMD最强的VEGA 64,RTX 2080 Ti在性能几乎翻倍的情况下,TDP只有对手的70%,能耗比差不多有3倍的差距。

由于参与对比评测的显卡都已在仓库存放许久,可能会出现硅脂干化等情况,因此不对这些显卡进行温度测试,我们在这里只测试2张图灵显卡的温度表现。测试时室温26度、测试软件为Furmark。

图灵的公版显卡舍弃了原来的涡轮风扇改换成了现在的双风扇散热系统,温度也好看了很多。RTX 2080烤机温度只有75度,比GTX 1080低了8度,RTX 2080 Ti机温度为79度,比GTX 1080 Ti低了6度。

十六、DLSS测试:锯齿肉眼几乎不可见 游戏性能毫无影响

3D游戏画面在运行时,物体边缘会产生“狗牙”(锯齿),分辨率越低,锯齿越严重,严重影响观感。由此产生了许许多多的抗锯齿技术,例如SSAA、SMAA、FXAA、TAA。以上这些技术要么需要对额外的像素进行渲染,要么需要对额外的帧进行渲染,无论怎样都需要消耗GPU资源,使游戏的帧率大大降低。有鉴于此,NVIDIA推出了DLSS(Deep Learning Super Sampling)深度学习超级采样抗锯齿技术。

不用于以往任何抗锯齿技术,DLSS使用图灵核心中的Tensor单元来进行运算,不需要消耗CUDA单元,因此不会对显卡的性能造成任何损失,不过却能得到等同于TAA(时间抗锯齿)的画质。

下面我们以最终幻想15 BenchMark程序来体验DLSS的效果。

这是未开启抗锯齿的画质,帧数很高,达到了59FPS。但是汽车边缘的锯齿感非常明显,要知道这可是4K分辨率,如果降低到1080P,锯齿现象会更加严重。

上图是开启了TAA抗锯齿的画面,汽车边缘的锯齿肉眼几乎不可见,但帧率也降低至43FPS。

这是开启了DLSS抗锯齿的画面,汽车的锯齿也基本上几乎看不到,但是帧率则维持在较高的57FPS,大大优于开启TAA时的表现。。

GTX Ti开启DLSS模式直接报错,只能运行TAA。

这是RTX 2080的测试成绩,左边是开启了DLSS,分数为4547,右边则开启了TAA模式,分数3353。

这是RTX 2080 Ti的测试成绩,左边是开启了DLSS,分数为5812(很奇怪,超越了没开AA的分数,测试3次均是如此),右边则开启了TAA模式,分数4219。

十七、光线追踪测试:体验真实世界的光影效果

传统的光栅化渲染是将一个3D图形的几何信息转变为一个个栅格组成的2D图像的过程,可以理解为在这个3D图形的每个点都包含有颜色、深度以及纹理数据,经过一系列计算变换后,将其转换为2D图像的像素,进而呈现在显示设备上。

这一过程也就构成了我们爱游戏中所看到的各类阴影效果以及光线投射,在这过程中所有的光影效果都是提前设计好的,如果开发者设计时不那么严谨,就会在不应该有阴影的地方出现阴影。同时即便耗费巨大精力去提前设计好的所有阴影的可能情况,也只能做到无限接近于真实,况且这一点本身也很难做到。于是实时光线追踪(ray tracing)便成为了玩家与游戏开发者最终极的选择与梦想。

传统的光线追踪技术是以光源为起点定义光线,进而追踪由此产生的光线与物体表面以及光线与光线之间交互关系的过程。但该技术目前实现起来非常困难,因为这一技术需要无限多的光线照射在物体表面,通过反射、折射、漫射等途径进入最终的“摄像机”成像。这一过程需要耗费大量的算力且会有大量光线损失。因此光线追踪技术自诞生之日起,就有人断言20年之内光线追踪不可能实现。

然而天才的NVIDIA工程师们解决了这个难题。提出了一种新的Ray tracing理念,即是通过进入“摄像机”的光线,来回溯寻找光源。大部分从光源发出被折射或者漫反射不被玩家所看到的光线将不会被运算,这种思路将需要实时计算的光线数量降低了数十倍,使得实时光线追踪技术至少提前十年成为现实。

从上面2张图可以可以明显的看到小飞行器飞行时,在飞船上的倒影也是一直在变化方位。小飞机器自身也在发光,因此它的倒影的明暗度以及形状也是随时在发生着变化。

除此之外,大飞船本身也在缓慢滑行,周围的环形灯柱投射在飞船上的倒影也是无时无刻都在变化着。

RTX 2080 Ti集成了68个RT Cores,每秒能处理100亿条光线,而GTX 1080 Ti只能靠CUDA来计算光线,每秒能处理11亿光线。下面我们通过星球大战DEMO来演示光线追踪的性能,这个DEMO可以为展现出一个如果科幻电影般的光影世界。

十八、总结:NVIDIA完成自我突破 图灵彻底无敌

毫不夸张的说,图灵是NVIDIA是十年来最大的一次构架更新,其意义不亚于2006年发布的世界上第一块支持DirectX 10 的代号为G80的GeForce 8800 Ultra显卡。图灵的改进如此之多,我们此篇评测只是测试了其中一部分特性,之后还会有一篇补充评测。

图灵第一次将深度学习引入了游戏卡中,目前来说最主要的用途就是DLSS(深度学习超级采样抗锯齿),他能提供与TAA抗锯齿技术几乎相同的画质(未来会在画质上会超越TAA),但丝毫不会影响到游戏性能,在我们的测试中,RTX 2080 DLSS的性能领先GTX 1080 TAA达到了80%。

而RTX(实时光线追踪)是一项革命性的技术,NVIDIA花了整整10年时间来开发,才有现在的成果。过去所有的阴影技术无论看上去多么逼真,其实都是虚假的,实时光线追踪技术能构造出一个完全真实的光影世界。RTX 2080 Ti集成了68个RT核心,RTX-OPS性能十倍于GTX 1080 Ti,在星球大战DEMO测试中,后者仅能跑出3FPS的帧率,而RTX

Turing还在每个流处理中增加了一个INT32整数单元,能将流处理器运算效能提升36%,因此在我们的测试中,2944个流处理器的RTX 2080在游戏性能上比3584个流处理器的GTX 1080 Ti还要强了15%以上,而功耗更低。在能耗比这个指标上,图灵相比帕斯卡至少有30%的提升。

再来说说NVIDIA的老对手AMD。最近几年AMD的GPU研发几近停滞,相比NVIDIA一次又一次的彻底更新内核构架,AMD则是一个GCN构架从2011年一直用到现在(VEGA构架也是GCN之上做了一些修修补补)。目前VEGA与图灵的能耗比差距已经达到了3倍之多,这个差距之大,可能即将发布的7nm的VEGA游戏卡都难以弥补,然后明年又要面对NVIDIA 7nm制程工艺的安培,结局不用想都很明了!

再说说图灵的售价,虽说他的性能完全对得起价格,但是售价一万元的游戏显卡已经远远超过的普通玩家的预算以及预期。如果AMD不能推出一款类似于图灵这样革命性的GPU构架,未来很长一段时间,独立显卡都将是NVIDIA一人的独角戏。

}

我要回帖

更多关于 如何清理主机CPU风扇 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信