447138可以被哪个数整除多少整除

长城C30长可以倒进过道宽3.8米大门宽2.7米的地方吗?大门比过道高25cm左_百度知道
长城C30长可以倒进过道宽3.8米大门宽2.7米的地方吗?大门比过道高25cm左
长城C30长可以倒进过道宽3.8米大门宽2.7米的地方吗?大门比过道高25cm左右,紧急求助
我有更好的答案
很难进门的
本来就这么窄还加有坡高落差25公分
那长的赛欧三呢?都是倒着进可以吗?
那请问多长的车比较容易倒进去啊?
轿车的尺寸长宽不是关键,主要问题在转向角,所以说一般转窄弯倒车更容易做到的
噢噢,那也就是说多倒几把应该可以进去吧?
是的,你最头疼的关键是有高差,进入时车子会侧倾,要留意碰墙
恩,谢谢提醒
采纳率:68%
为您推荐:
其他类似问题
换一换
回答问题,赢新手礼包
个人、企业类
违法有害信息,请在下方选择后提交
色情、暴力
我们会通过消息、邮箱等方式尽快将举报结果通知您。&figure&&img src=&https://pic4.zhimg.com/v2-cd6aed6b4471dcea42d862_b.jpg& data-rawwidth=&1920& data-rawheight=&1200& class=&origin_image zh-lightbox-thumb& width=&1920& data-original=&https://pic4.zhimg.com/v2-cd6aed6b4471dcea42d862_r.jpg&&&/figure&&ol&&li&这是一个关于初等数论的入门级别学习笔记&/li&&li&适合中学数学水平的读者&/li&&li&主要内容:唯一分解定理,互质,最大公因数,最小公倍数,同余关系,同余类,完全剩余系,缩剩余系,欧拉函数,欧拉定理,费马小定理,中国剩余定理,逆元。&/li&&/ol&&hr&&blockquote&求正整数 &img src=&https://www.zhihu.com/equation?tex=3%5E%7B83%7D& alt=&3^{83}& eeimg=&1&& 的最后两位数&/blockquote&&p&看到类似这样求一个数的某次方的最后几位数的问题,&/p&&p&没有接触过初等数论的同学可能第一反应是小学的做法:找规律。&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7D+%263%5E0+%3D+%5Cquad%5Cspace+%5Cspace+%5Ccolor%7Bred%7D1%5C%5C+%263%5E1+%3D+%5Cspace+%5Cquad+%5Cspace+%5Ccolor%7Bred%7D3%5C%5C+%263%5E2+%3D%5Cspace+%5Cquad+%5Cspace+%5Ccolor%7Bred%7D9%5C%5C+%263%5E3+%3D%5Cspace+%5Cspace+%5Cspace+%5Cspace+2+%5Ccolor%7Bred%7D+7%5C%5C+%263%5E4+%3D%5Cspace+%5Cspace+%5Cspace+%5Cspace+8+%5Ccolor%7Bred%7D+1+%5C%5C+%263%5E5+%3D%5Cspace+%5Cspace+24+%5Ccolor%7Bred%7D+3+%5C%5C+%263%5E6+%3D%5Cspace+%5Cspace+72+%5Ccolor%7Bred%7D+9+%5C%5C+%263%5E7+%3D218%5Ccolor%7Bred%7D7+%5C%5C+%263%5E8+%3D+656%5Ccolor%7Bred%7D+1+%5C%5C+%5Cend%7Balign%7D%5C%5C& alt=&\begin{align} &3^0 = \quad\space \space \color{red}1\\ &3^1 = \space \quad \space \color{red}3\\ &3^2 =\space \quad \space \color{red}9\\ &3^3 =\space \space \space \space 2 \color{red} 7\\ &3^4 =\space \space \space \space 8 \color{red} 1 \\ &3^5 =\space \space 24 \color{red} 3 \\ &3^6 =\space \space 72 \color{red} 9 \\ &3^7 =218\color{red}7 \\ &3^8 = 656\color{red} 1 \\ \end{align}\\& eeimg=&1&&&/p&&p&可以看出来 &img src=&https://www.zhihu.com/equation?tex=3%5En& alt=&3^n& eeimg=&1&& 的个位是 &img src=&https://www.zhihu.com/equation?tex=1%2C3%2C9%2C7& alt=&1,3,9,7& eeimg=&1&& 循环,循环周期是 &img src=&https://www.zhihu.com/equation?tex=4& alt=&4& eeimg=&1&&&/p&&p&而十位是 &img src=&https://www.zhihu.com/equation?tex=0%2C0%2C0%2C2%2C+8%2C+4%2C+2%2C+8%2C+6%2C+8%2C+4%2C+4%2C+4%2C+2%2C+6%2C+0%2C+2%2C+6%2C+8%2C+6& alt=&0,0,0,2, 8, 4, 2, 8, 6, 8, 4, 4, 4, 2, 6, 0, 2, 6, 8, 6& eeimg=&1&& 循环,循环周期是 &img src=&https://www.zhihu.com/equation?tex=20& alt=&20& eeimg=&1&&&/p&&p&所以 &img src=&https://www.zhihu.com/equation?tex=3%5E%7B83%7D& alt=&3^{83}& eeimg=&1&& 最后两位是 &img src=&https://www.zhihu.com/equation?tex=27& alt=&27& eeimg=&1&&&/p&&p&接触过一点初等数论的同学表示这种方法too young,因为这个问题可以用&b&欧拉定理(Euler's theorm)&/b&秒杀。&/p&&blockquote&如果正整数 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 和整数 &img src=&https://www.zhihu.com/equation?tex=a& alt=&a& eeimg=&1&& 互质,那么就有&br&&img src=&https://www.zhihu.com/equation?tex=a%5E%7B%5Cvarphi%28n%29%7D%5Cequiv+1+%5Cpmod%7Bn%7D%5C%5C& alt=&a^{\varphi(n)}\equiv 1 \pmod{n}\\& eeimg=&1&&&br&其中&b&欧拉函数&/b& &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29& alt=&\varphi(n)& eeimg=&1&& 是「小于 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的正整数中和 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 互质的数」的个数&/blockquote&&p&因为&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%D100%5Cleft%28+1-%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Cleft%28+1-%5Cfrac%7B1%7D%7B5%7D%5Cright%29%3D40%5C%5C& alt=&\varphi(100)=100\left( 1-\frac{1}{2}\right)\left( 1-\frac{1}{5}\right)=40\\& eeimg=&1&&&/p&&p&我们又知道 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%283%2C+100%29%3D1& alt=&\gcd(3, 100)=1& eeimg=&1&& ,所以&/p&&p&&img src=&https://www.zhihu.com/equation?tex=3%5E%7B83%7D%3D3%5E%7B3%7D%5Ctimes+3%5E%7B80%7D+%3D3%5E%7B3%7D%5Ctimes+%5Cleft%283%5E%7B%5Cvarphi%D%5Cright%29%5E2+%5Cequiv+3%5E3%5Ctimes+1+%3D+27%5Cpmod%7B100%7D%5C%5C& alt=&3^{83}=3^{3}\times 3^{80} =3^{3}\times \left(3^{\varphi(100)}\right)^2 \equiv 3^3\times 1 = 27\pmod{100}\\& eeimg=&1&&&/p&&p&利用好欧拉定理我们还可以解决很多类似的问题(部分选自Brilliant)&/p&&ul&&li&求 &img src=&https://www.zhihu.com/equation?tex=BBD& alt=&^{2014}}& eeimg=&1&& 的最后两位数&/li&&li&求 &img src=&https://www.zhihu.com/equation?tex=1%5E%7BB2%5E%7BB%5Ccdots+%2B+B2016%7D& alt=&1^{16}+\cdots + }& eeimg=&1&& 除以 &img src=&https://www.zhihu.com/equation?tex=2016& alt=&2016& eeimg=&1&& 的余数&/li&&li&求 &img src=&https://www.zhihu.com/equation?tex=8%5E%7B7%5E%7B6%5E%7B5%5E%7B4%5E%7B3%5E%7B2%5E%7B1%7D%7D%7D%7D%7D%7D%7D& alt=&8^{7^{6^{5^{4^{3^{2^{1}}}}}}}& eeimg=&1&& 的最后三位数&/li&&li&有多少个正整数 &img src=&https://www.zhihu.com/equation?tex=1%5Cle+n+%5Cle+2015& alt=&1\le n \le 2015& eeimg=&1&& 使得 &img src=&https://www.zhihu.com/equation?tex=n%5E%7Bn%5E%7Bn%7D%7D& alt=&n^{n^{n}}& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=n%5En& alt=&n^n& eeimg=&1&& 的个位数相同?&/li&&li&&img src=&https://www.zhihu.com/equation?tex=249& alt=&249& eeimg=&1&& 的奇数次方末尾总会出现其本身 &img src=&https://www.zhihu.com/equation?tex=%5Ccolor%7Bred%7D%7B249%7D%5E3+%3D15438%5Ccolor%7Bred%7D%7B249%7D+& alt=&\color{red}{249}^3 =15438\color{red}{249} & eeimg=&1&& , &img src=&https://www.zhihu.com/equation?tex=%5Ccolor%7Bred%7D%7B249%7D%5E5%3DCcolor%7Bred%7D%7B249%7D& alt=&\color{red}{249}^5=\color{red}{249}& eeimg=&1&& 等等。&img src=&https://www.zhihu.com/equation?tex=1000& alt=&1000& eeimg=&1&& 以内有多少个正整数有这样的性质?&/li&&/ul&&hr&&p&我们首先从初等数论最基本的几个概念说起&/p&&p&&br&&/p&&p&&b&1.唯一质数分解定理(Unique factorisation theorm)&/b&&/p&&p&任何一个正整数 &img src=&https://www.zhihu.com/equation?tex=n%3E1& alt=&n&1& eeimg=&1&& 都可以唯一地分解为一组质数的乘积&/p&&p&&img src=&https://www.zhihu.com/equation?tex=n%3D2%5E%7Be_1%7D%5Ctimes3%5E%7Be_2%7D%5Ctimes+5%5E%7Be_3%7D%5Ctimes+%5Ccdots%3D%5Cprod_%7Bk%3D1%7D%5E%5Cinfty+p_k%5E%7Be_k%7D%5C%5C& alt=&n=2^{e_1}\times3^{e_2}\times 5^{e_3}\times \cdots=\prod_{k=1}^\infty p_k^{e_k}\\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=e_1%2C+e_2%2C%5Cldots+%5Cin+%5Cmathbb%7BN%7D& alt=&e_1, e_2,\ldots \in \mathbb{N}& eeimg=&1&& ,我们称这个分解为 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的标准分解&/p&&p&&br&&/p&&p&&b&2.互质(Coprime)、最大公因数(GCD)和最小公倍数(LCM)&/b&&/p&&p&对于整数 &img src=&https://www.zhihu.com/equation?tex=a%2C+b& alt=&a, b& eeimg=&1&& 我们记 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28a%2C+b%29& alt=&\gcd(a, b)& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=%5Coperatorname%7Blcm%7D%28a%2C+b%29& alt=&\operatorname{lcm}(a, b)& eeimg=&1&& 为 &img src=&https://www.zhihu.com/equation?tex=a%2C+b& alt=&a, b& eeimg=&1&& 的最大公因数和最小公倍数,有时候我们会直接把他们简写为 &img src=&https://www.zhihu.com/equation?tex=%28a%2C+b%29& alt=&(a, b)& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=%5Ba%2C+b%5D& alt=&[a, b]& eeimg=&1&& 。如果 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28a%2C+b%29%3D1& alt=&\gcd(a, b)=1& eeimg=&1&& ,我们称 &img src=&https://www.zhihu.com/equation?tex=a%2C+b& alt=&a, b& eeimg=&1&& 互质,也就是说他们没有任何共同的质因数。&/p&&p&它有几个基本的性质,对于正整数 &img src=&https://www.zhihu.com/equation?tex=a%2C+b%2C+n& alt=&a, b, n& eeimg=&1&&&/p&&ul&&li&&img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28a%2C+b%29%3D%5Cgcd%28a%5Cpm+b%2C+b%29& alt=&\gcd(a, b)=\gcd(a\pm b, b)& eeimg=&1&&&/li&&li&&img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28na%2C+nb%29%3Dn%5Cgcd%28a%2C+b%29& alt=&\gcd(na, nb)=n\gcd(a, b)& eeimg=&1&&&/li&&li&&img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28a%2C+b%29%3D%5Cfrac%7Ba%5Ccdot+b%7D%7B%5Coperatorname%7Blcm%7D%28a%2C+b%29%7D& alt=&\gcd(a, b)=\frac{a\cdot b}{\operatorname{lcm}(a, b)}& eeimg=&1&&&/li&&li&&b&贝祖定理&/b&:总能找到整数 &img src=&https://www.zhihu.com/equation?tex=x%2C+y& alt=&x, y& eeimg=&1&& 使得 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28a%2C+b%29%3Dax%2Bby& alt=&\gcd(a, b)=ax+by& eeimg=&1&&&/li&&/ul&&p&&br&&/p&&p&&b&2.同余关系(Congruence relations)&/b&&/p&&p&整数 &img src=&https://www.zhihu.com/equation?tex=a& alt=&a& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=b& alt=&b& eeimg=&1&& 除以 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的余数相同,则称 &img src=&https://www.zhihu.com/equation?tex=a%2Cb& alt=&a,b& eeimg=&1&& 模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 同余,计作&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a+%5Cequiv+b+%5Cpmod%7Bn%7D%5C%5C& alt=&a \equiv b \pmod{n}\\& eeimg=&1&&&/p&&p&如果对于整数 &img src=&https://www.zhihu.com/equation?tex=a_1%2C+a_2%2C+b_1%2C+b_2& alt=&a_1, a_2, b_1, b_2& eeimg=&1&& 有&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a_1+%5Cequiv+b_1+%5Cpmod%7Bn%7D%5C%5Ca_2+%5Cequiv+b_2+%5Cpmod%7Bn%7D& alt=&a_1 \equiv b_1 \pmod{n}\\a_2 \equiv b_2 \pmod{n}& eeimg=&1&&&/p&&p&那么可以把他们相加或相减&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a_1+%5Cpm+a_2+%5Cequiv+b_1+%5Cpm+b_2%5Cpmod%7Bn%7D%5C%5C& alt=&a_1 \pm a_2 \equiv b_1 \pm b_2\pmod{n}\\& eeimg=&1&&&/p&&p&也可以把他们相乘&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a_1a_2+%5Cequiv+b_1b_2%5Cpmod%7Bn%7D%5C%5C& alt=&a_1a_2 \equiv b_1b_2\pmod{n}\\& eeimg=&1&&&/p&&p&通过这两条性质,我们容易知道,如果 &img src=&https://www.zhihu.com/equation?tex=a%5Cequiv+b+%5Cpmod%7Bn%7D& alt=&a\equiv b \pmod{n}& eeimg=&1&& 那么&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cmathrm+P%28a%29%5Cequiv+%5Cmathrm+P%28b%29+%5Cpmod%7Bn%7D%5C%5C+& alt=&\mathrm P(a)\equiv \mathrm P(b) \pmod{n}\\ & eeimg=&1&&&/p&&p&对于任意整系数多项式 &img src=&https://www.zhihu.com/equation?tex=%5Cmathrm+P%28x%29& alt=&\mathrm P(x)& eeimg=&1&& 都成立,这个结论很重要哦,经常会用&/p&&p&这里需要注意的一点是,如果整数 &img src=&https://www.zhihu.com/equation?tex=a%2C+b%2C+c& alt=&a, b, c& eeimg=&1&& 满足&/p&&p&&img src=&https://www.zhihu.com/equation?tex=ac%5Cequiv+bc+%5Cpmod%7Bn%7D%5C%5C& alt=&ac\equiv bc \pmod{n}\\& eeimg=&1&&&/p&&p&那么只有当 &img src=&https://www.zhihu.com/equation?tex=n%2C+c& alt=&n, c& eeimg=&1&& 互质时才可以把两边的 &img src=&https://www.zhihu.com/equation?tex=c& alt=&c& eeimg=&1&& 直接约掉,得到 &img src=&https://www.zhihu.com/equation?tex=a%5Cequiv+b+%5Cpmod%7Bn%7D& alt=&a\equiv b \pmod{n}& eeimg=&1&& ,更一般的&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a%5Cequiv+b+%5Cpmod%7B%5Cfrac%7Bn%7D%7B%5Cgcd%28n%2C+c%29%7D%7D%5C%5C& alt=&a\equiv b \pmod{\frac{n}{\gcd(n, c)}}\\& eeimg=&1&&&/p&&p&&br&&/p&&p&&b&3.同余类(Residue class)、完全剩余系(Complete residue system)、缩剩余系(Reduced residue system)&/b&&/p&&p&通过一个整数模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的余数,我们可以把所有整数分成 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 类,记&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Coverline%7Br%7D_n%3D%5C%7Bm%5Cin+%5Cmathbb%7BZ%7D+%5Cmid+mn%2Br%5C%7D%5C%5C& alt=&\overline{r}_n=\{m\in \mathbb{Z} \mid mn+r\}\\& eeimg=&1&&&/p&&p&为模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 余 &img src=&https://www.zhihu.com/equation?tex=r& alt=&r& eeimg=&1&& 的&b&同余类&/b&(也叫&b&剩余类&/b&)举个例子&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Coverline%7B4%7D_%7B10%7D%3D%5C%7B%5Cdots%2C-16%2C-6%2C4%2C+14%2C+24%2C+%5Cdots%5C%7D%5C%5C& alt=&\overline{4}_{10}=\{\dots,-16,-6,4, 14, 24, \dots\}\\& eeimg=&1&&&/p&&p&是模 &img src=&https://www.zhihu.com/equation?tex=10& alt=&10& eeimg=&1&& 余 &img src=&https://www.zhihu.com/equation?tex=4& alt=&4& eeimg=&1&& 的同余类&/p&&p&从 &img src=&https://www.zhihu.com/equation?tex=%5Coverline%7B0%7D_n%2C+%5Coverline%7B1%7D_n%2C+%5Coverline%7B2%7D_n%2C+%5Cdots%2C%5Coverline%7B%28n-1%29%7D_n& alt=&\overline{0}_n, \overline{1}_n, \overline{2}_n, \dots,\overline{(n-1)}_n& eeimg=&1&& 中各挑出一个数就组成了一个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的&b&完全剩余系(完系)&/b& &img src=&https://www.zhihu.com/equation?tex=R_n& alt=&R_n& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=R_n+%3D+%5C%7Br_0%2C+r_1%2C+%5Cdots%2C+r_%7Bn-1%7D%5C%7D%5C%5C& alt=&R_n = \{r_0, r_1, \dots, r_{n-1}\}\\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=r_0+%5Cin+%5Coverline0_n%2C+r_1+%5Cin+%5Coverline1_n%2C+r_2+%5Cin+%5Coverline2_n%2C+%5Cdots%2C+r_%7Bn-1%7D+%5Cin+%5Coverline%7B%28n-1%29%7D_n& alt=&r_0 \in \overline0_n, r_1 \in \overline1_n, r_2 \in \overline2_n, \dots, r_{n-1} \in \overline{(n-1)}_n& eeimg=&1&&&/p&&p&换言之, &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 互相不同余的整数组成一个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的完全剩余系。&/p&&p&我们称 &img src=&https://www.zhihu.com/equation?tex=R_n+%3D+%5C%7B0%2C+1%2C+%5Cdots%2C+n-1%5C%7D& alt=&R_n = \{0, 1, \dots, n-1\}& eeimg=&1&& 为模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的&b&最小非负完全剩余系(最小非负完系)。&/b&&/p&&p&取一个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的完全剩余系 &img src=&https://www.zhihu.com/equation?tex=R_n& alt=&R_n& eeimg=&1&& ,取出里面所有和 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 互质的数,这些数组成一个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的&b&缩剩余系(缩系)&/b&,记为 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_n& alt=&\Phi_n& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5CPhi_n+%3D+%5C%7Bc_1%2C+c_2%2C+%5Cdots%2C+c_%7B%5Cvarphi%28n%29%7D+%5C%7D%5C%5C& alt=&\Phi_n = \{c_1, c_2, \dots, c_{\varphi(n)} \}\\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29& alt=&\varphi(n)& eeimg=&1&& 是序言里提到的欧拉函数,代表「小于 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的正整数中和 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 互质的数」的个数。&/p&&p&注意,因为 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28c_i%2C+n%29%3D%5Cgcd%28c_i%2Bn%2C+n%29%3D1& alt=&\gcd(c_i, n)=\gcd(c_i+n, n)=1& eeimg=&1&& ,每一个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的缩剩余系有相同数量的元素(缩剩余系中的每一个数所属的同余类是确定的,所以总有确定的 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29& alt=&\varphi(n)& eeimg=&1&& 个同余类)&/p&&p&如果缩剩余系 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_n+%3D+%5C%7Bc_1%2C+c_2%2C+%5Cdots%2C+c_%7B%5Cvarphi%28n%29%7D+%5C%7D& alt=&\Phi_n = \{c_1, c_2, \dots, c_{\varphi(n)} \}& eeimg=&1&&满足 &img src=&https://www.zhihu.com/equation?tex=1%5Cle+c_1%2C+c_2%2C+%5Cdots%2C+c_%7B%5Cvarphi%28n%29%7D%5Cle+n+-1& alt=&1\le c_1, c_2, \dots, c_{\varphi(n)}\le n -1& eeimg=&1&& ,那么称其为模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的&b&最小正缩剩余系(最小正缩系)&/b&。&/p&&p&&br&&/p&&p&&b&4.欧拉函数(Euler's totient function)&/b&&/p&&p&对于正整数 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& ,&img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29& alt=&\varphi(n)& eeimg=&1&& 代表「小于 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的正整数中和 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 互质的数」的个数,这个函数被称为欧拉函数;欧拉还告诉我们&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cfrac%7B%5Cvarphi%28n%29%7D%7Bn%7D%3D%5Cprod_%7Bp%7Cn%7D%5Cleft%28+1-%5Cfrac%7B1%7D%7Bp%7D%5Cright%29%5C%5C& alt=&\frac{\varphi(n)}{n}=\prod_{p|n}\left( 1-\frac{1}{p}\right)\\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 取到 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的所有质因数&/p&&p&所以我们可以很方便的计算一个正整数欧拉函数的值,比如&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%%3D%5Cvarphi%282+%5Ctimes+3%5E2%5Ctimes+107%29%3D1926%5Cleft%28+1-%5Cfrac%7B1%7D%7B2%7D%5Cright%29%5Cleft%28+1-%5Cfrac%7B1%7D%7B3%7D%5Cright%29%5Cleft%28+1-%5Cfrac%7B1%7D%7B107%7D%5Cright%29%3D636+%5C%5C& alt=&\varphi(1926)=\varphi(2 \times 3^2\times 107)=1926\left( 1-\frac{1}{2}\right)\left( 1-\frac{1}{3}\right)\left( 1-\frac{1}{107}\right)=636 \\& eeimg=&1&&&/p&&p&欧拉函数还有一些非常有用的性质(跳过不影响下一部分的阅读)&/p&&ul&&li&如果正整数 &img src=&https://www.zhihu.com/equation?tex=n%3E2& alt=&n&2& eeimg=&1&& 那么 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29& alt=&\varphi(n)& eeimg=&1&& 是偶数&/li&&li&如果
&img src=&https://www.zhihu.com/equation?tex=n%5C+%7C%5C+N& alt=&n\ |\ N& eeimg=&1&& ,那么 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29%5C+%7C+%5C+%5Cvarphi%28N%29& alt=&\varphi(n)\ | \ \varphi(N)& eeimg=&1&&&/li&&li&对于正整数 &img src=&https://www.zhihu.com/equation?tex=a%2C+n& alt=&a, n& eeimg=&1&& 有 &img src=&https://www.zhihu.com/equation?tex=n+%5C+%7C%5C+%5Cvarphi%28a%5En+-+1%29& alt=&n \ |\ \varphi(a^n - 1)& eeimg=&1&&&/li&&li&对于正整数 &img src=&https://www.zhihu.com/equation?tex=m%2C+n& alt=&m, n& eeimg=&1&& 有&img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28mn%29%3D%5Cvarphi%28m%29%5Cvarphi%28n%29%5Cfrac%7B%5Cgcd%28m%2C+n%29%7D%7B%5Cvarphi%28%5Cgcd%28m%2C+n%29%29%7D& alt=&\varphi(mn)=\varphi(m)\varphi(n)\frac{\gcd(m, n)}{\varphi(\gcd(m, n))}& eeimg=&1&&&/li&&li&特别地,如果 &img src=&https://www.zhihu.com/equation?tex=m%2C+n& alt=&m, n& eeimg=&1&& 互质,那么 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28mn%29%3D%5Cvarphi%28m%29%5Cvarphi%28n%29& alt=&\varphi(mn)=\varphi(m)\varphi(n)& eeimg=&1&&&/li&&li&对于正整数 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 有 &img src=&https://www.zhihu.com/equation?tex=%5Csum_%7Bd%7C+n%7D%5Cvarphi%28d%29%3Dn& alt=&\sum_{d| n}\varphi(d)=n& eeimg=&1&&&/li&&li&对于正整数 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 有 &img src=&https://www.zhihu.com/equation?tex=%5Csum_%7B1%5Cle+k+%5Cle+n%5Catop+%5Cgcd%28k%2C+n%29%3D1%7D%5Cfrac%7Bk%7D%7Bn%7D%3D%5Cfrac%7B%5Cvarphi%28n%29%7D%7B2%7D& alt=&\sum_{1\le k \le n\atop \gcd(k, n)=1}\frac{k}{n}=\frac{\varphi(n)}{2}& eeimg=&1&&&/li&&/ul&&hr&&p&接下来我们进入正题:欧拉定理&/p&&blockquote&如果正整数 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 和整数 &img src=&https://www.zhihu.com/equation?tex=a& alt=&a& eeimg=&1&& 互质,那么就有&br&&img src=&https://www.zhihu.com/equation?tex=a%5E%7B%5Cvarphi%28n%29%7D%5Cequiv+1+%5Cpmod%7Bn%7D%5C%5C& alt=&a^{\varphi(n)}\equiv 1 \pmod{n}\\& eeimg=&1&&&br&其中 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28n%29& alt=&\varphi(n)& eeimg=&1&& 是&b&欧拉函数&/b&&/blockquote&&p&以下是证明&/p&&p&考虑模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的最小正缩系&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5CPhi_n+%3D%5C%7Bc_1%2C+c_2%2C+%5Cdots%2C+c_%7B%5Cvarphi%28n%29%7D%5C%7D%5C%5C& alt=&\Phi_n =\{c_1, c_2, \dots, c_{\varphi(n)}\}\\& eeimg=&1&&&/p&&p&已知 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28a%2Cn%29%3D1& alt=&\gcd(a,n)=1& eeimg=&1&& 我们在 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_n& alt=&\Phi_n& eeimg=&1&& 的每一个元素前面都乘一个 &img src=&https://www.zhihu.com/equation?tex=a& alt=&a& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a%5CPhi_n+%3D+%5C%7Bac_1%2Ca+c_2%2C+%5Cdots%2C+ac_%7B%5Cvarphi%28n%29%7D%5C%7D%5C%5C& alt=&a\Phi_n = \{ac_1,a c_2, \dots, ac_{\varphi(n)}\}\\& eeimg=&1&&&/p&&p&利用反证法可以证明 &img src=&https://www.zhihu.com/equation?tex=a%5CPhi_n& alt=&a\Phi_n& eeimg=&1&& 也是一个模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的缩系(其元素的同余类的顺序有可能会改变,但是这并没有任何影响),假设&/p&&p&&img src=&https://www.zhihu.com/equation?tex=ac_i+%5Cequiv+ac_j+%5Cpmod%7Bn%7D+%5C%5C& alt=&ac_i \equiv ac_j \pmod{n} \\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=i%5Cne+j& alt=&i\ne j& eeimg=&1&& ,因为 &img src=&https://www.zhihu.com/equation?tex=a%2C+n& alt=&a, n& eeimg=&1&& 互质可以将两边消去 &img src=&https://www.zhihu.com/equation?tex=a& alt=&a& eeimg=&1&& ,那么就得到&/p&&p&&img src=&https://www.zhihu.com/equation?tex=c_i+%5Cequiv+c_j+%5Cpmod%7Bn%7D+%5C%5C& alt=&c_i \equiv c_j \pmod{n} \\& eeimg=&1&&&/p&&p&这是不可能的,因为 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_n& alt=&\Phi_n& eeimg=&1&& 中的元素互相模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 不同余,矛盾啦!&/p&&p&接下来的思路就比较清晰了,因为 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_n& alt=&\Phi_n& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=a%5CPhi_n& alt=&a\Phi_n& eeimg=&1&& 都是模 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的缩系&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cprod_%7Bi%3D1%7D%5E%7B%5Cvarphi%28n%29%7D+c_i%5Cequiv+%5Cprod_%7Bi%3D1%7D%5E%7B%5Cvarphi%28n%29%7D+ac_i+%3D+a%5E%7B%5Cvarphi%28n%29%7D%5Cprod_%7Bi%3D1%7D%5E%7B%5Cvarphi%28n%29%7D+c_i+%5Cpmod%7Bn%7D+%5C%5C& alt=&\prod_{i=1}^{\varphi(n)} c_i\equiv \prod_{i=1}^{\varphi(n)} ac_i = a^{\varphi(n)}\prod_{i=1}^{\varphi(n)} c_i \pmod{n} \\& eeimg=&1&&&/p&&p&显然 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%5Cleft%28n%2C+%5Cprod_%7Bi%3D1%7D%5E%7B%5Cvarphi%28n%29%7D+c_i+%5Cright%29%3D1& alt=&\gcd\left(n, \prod_{i=1}^{\varphi(n)} c_i \right)=1& eeimg=&1&& 所以可以两边消去它&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a%5E%7B%5Cvarphi%28n%29%7D%5Cequiv+1+%5Cpmod%7Bn%7D%5C%5C& alt=&a^{\varphi(n)}\equiv 1 \pmod{n}\\& eeimg=&1&&&/p&&p&然后我们就证毕啦,是不是意外的简单?&/p&&p&另外,如果我们让 &img src=&https://www.zhihu.com/equation?tex=n%3Dp& alt=&n=p& eeimg=&1&& 是一个质数,我们就可以从欧拉定理推出&b&费马小定理(Fermat's little theorm)&/b&&/p&&blockquote&如果 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 是质数,那么 &img src=&https://www.zhihu.com/equation?tex=p+%5C+%7C+%5C+n%5Ep+-n& alt=&p \ | \ n^p -n& eeimg=&1&& 对于任意整数 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 都成立&/blockquote&&p&当然,费马小定理也可以用归纳法证明,假设 &img src=&https://www.zhihu.com/equation?tex=p+%5C+%7C+%5C+n%5Ep+-n& alt=&p \ | \ n^p -n& eeimg=&1&& ,那么&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%28n%2B1%29%5Ep-%28n%2B1%29%3D%5Csum_%7Br%3D1%7D%5E%7Bp-1%7D%5Cbinom%7Bp%7D%7Br%7Dn%5Er+%2B+n%5Ep+-+n%5C%5C& alt=&(n+1)^p-(n+1)=\sum_{r=1}^{p-1}\binom{p}{r}n^r + n^p - n\\& eeimg=&1&&&/p&&p&当 &img src=&https://www.zhihu.com/equation?tex=1%5Cle+r+%5Cle+p+-1& alt=&1\le r \le p -1& eeimg=&1&& 时,二项式系数 &img src=&https://www.zhihu.com/equation?tex=%5Cbinom%7Bp%7D%7Br%7D%3D%5Cfrac%7Bp%21%7D%7B%28p-r%29%21r%21%7D+& alt=&\binom{p}{r}=\frac{p!}{(p-r)!r!} & eeimg=&1&& 的分子中有 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& ,分母中每一个乘子都不能整除 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& (因为 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 是质数),所以 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 能够整除 &img src=&https://www.zhihu.com/equation?tex=%5Cbinom%7Bp%7D%7Br%7D& alt=&\binom{p}{r}& eeimg=&1&& ,进而得到 &img src=&https://www.zhihu.com/equation?tex=p+%5C+%7C+%5C+%28n%2B1%29%5Ep+-+%28n%2B1%29& alt=&p \ | \ (n+1)^p - (n+1)& eeimg=&1&& 。当 &img src=&https://www.zhihu.com/equation?tex=n%3D0& alt=&n=0& eeimg=&1&& 时显然成立,所以定理成立。&/p&&hr&&p&接下来我们看看如何证明&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cfrac%7B%5Cvarphi%28n%29%7D%7Bn%7D%3D%5Cprod_%7Bp%7Cn%7D%5Cleft%28+1-%5Cfrac%7B1%7D%7Bp%7D%5Cright%29%5C%5C& alt=&\frac{\varphi(n)}{n}=\prod_{p|n}\left( 1-\frac{1}{p}\right)\\& eeimg=&1&&&/p&&p&首先考虑 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28p%5Ee%29& alt=&\varphi(p^e)& eeimg=&1&& ,其中 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 是质数, &img src=&https://www.zhihu.com/equation?tex=e& alt=&e& eeimg=&1&& 是非负整数&/p&&p&如果要使 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28p%5Ee%2C+k%29%5Cne+1& alt=&\gcd(p^e, k)\ne 1& eeimg=&1&& ,只能让 &img src=&https://www.zhihu.com/equation?tex=k& alt=&k& eeimg=&1&& 等于 &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 的倍数&/p&&p&在 &img src=&https://www.zhihu.com/equation?tex=1%5Cle+k+%5Cle+p%5Ee& alt=&1\le k \le p^e& eeimg=&1&& 范围内, &img src=&https://www.zhihu.com/equation?tex=p& alt=&p& eeimg=&1&& 的倍数有 &img src=&https://www.zhihu.com/equation?tex=p%2C+2p%2C+3p%2C+%5Cdots+p%5E%7Be-1%7Dp%3Dp%5Ee& alt=&p, 2p, 3p, \dots p^{e-1}p=p^e& eeimg=&1&& 总共 &img src=&https://www.zhihu.com/equation?tex=p%5E%7Be-1%7D& alt=&p^{e-1}& eeimg=&1&& 个,所以&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28p%5Ee%29%3Dp%5Ee+-+p%5E%7Be-1%7D%3Dp%5Ee+%5Cleft%28+1-%5Cfrac%7B1%7D%7Bp%7D%5Cright%29%5C%5C& alt=&\varphi(p^e)=p^e - p^{e-1}=p^e \left( 1-\frac{1}{p}\right)\\& eeimg=&1&&&/p&&p&然后我们证明对于 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28m%2C+n%29%3D1& alt=&\gcd(m, n)=1& eeimg=&1&& 有 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28mn%29%3D%5Cvarphi%28m%29%5Cvarphi%28n%29& alt=&\varphi(mn)=\varphi(m)\varphi(n)& eeimg=&1&& ,我们首先构造两个集合,第一个集合是模 &img src=&https://www.zhihu.com/equation?tex=mn& alt=&mn& eeimg=&1&& 的最小正缩系 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_%7Bmn%7D& alt=&\Phi_{mn}& eeimg=&1&& ,第二个集合定义为&/p&&p&&img src=&https://www.zhihu.com/equation?tex=S%3D%5C%7B%28m%2C+n%29%5Cmid+m%5Cin+%5CPhi_m%2C+n%5Cin+%5CPhi_n+%5C%7D%5C%5C& alt=&S=\{(m, n)\mid m\in \Phi_m, n\in \Phi_n \}\\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_m%2C+%5CPhi_n& alt=&\Phi_m, \Phi_n& eeimg=&1&& 分别是模 &img src=&https://www.zhihu.com/equation?tex=m%2Cn& alt=&m,n& eeimg=&1&& 的最小正缩系,显然 &img src=&https://www.zhihu.com/equation?tex=%7C%5CPhi_%7Bmn%7D%7C%3D%5Cvarphi%28mn%29& alt=&|\Phi_{mn}|=\varphi(mn)& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=%7CS%7C%3D%5Cvarphi%28m%29%5Cvarphi%28n%29& alt=&|S|=\varphi(m)\varphi(n)& eeimg=&1&&&/p&&p&如果我们证明存在一个双射 &img src=&https://www.zhihu.com/equation?tex=f%3A%5CPhi_%7Bmn%7D%5Crightarrow+S& alt=&f:\Phi_{mn}\rightarrow S& eeimg=&1&& ,就证明了 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28mn%29%3D%5Cvarphi%28n%29%5Cvarphi%28n%29& alt=&\varphi(mn)=\varphi(n)\varphi(n)& eeimg=&1&&&/p&&p&我们让&/p&&p&&img src=&https://www.zhihu.com/equation?tex=f%28a%29%3D%28a+%5Cbmod+m%2C%5C+a+%5Cbmod+n%29%5C%5C& alt=&f(a)=(a \bmod m,\ a \bmod n)\\& eeimg=&1&&&/p&&p&首先我们用反证法证明 &img src=&https://www.zhihu.com/equation?tex=f& alt=&f& eeimg=&1&& 是单射,假设 &img src=&https://www.zhihu.com/equation?tex=a%2C+b+%5Cin+%5CPhi_%7Bmn%7D& alt=&a, b \in \Phi_{mn}& eeimg=&1&& 满足 &img src=&https://www.zhihu.com/equation?tex=a%5Cne+b& alt=&a\ne b& eeimg=&1&& 且 &img src=&https://www.zhihu.com/equation?tex=f%28a%29%3Df%28b%29& alt=&f(a)=f(b)& eeimg=&1&& 那么&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7Da%26%5Cequiv+b+%5Cpmod%7Bm%7D%5C%5Ca%26%5Cequiv+b+%5Cpmod%7Bn%7D%5Cend%7Balign%7D%5C%5C& alt=&\begin{align}a&\equiv b \pmod{m}\\a&\equiv b \pmod{n}\end{align}\\& eeimg=&1&&&/p&&p&显然因为 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28m%2Cn%29%3D1& alt=&\gcd(m,n)=1& eeimg=&1&& 我们能得出 &img src=&https://www.zhihu.com/equation?tex=a%5Cequiv+b+%5Cpmod%7Bmn%7D& alt=&a\equiv b \pmod{mn}& eeimg=&1&& ,这与我们的假设矛盾(因为 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_%7Bmn%7D& alt=&\Phi_{mn}& eeimg=&1&& 是模 &img src=&https://www.zhihu.com/equation?tex=mn& alt=&mn& eeimg=&1&& 的缩系, &img src=&https://www.zhihu.com/equation?tex=a%2C+b& alt=&a, b& eeimg=&1&& 是 &img src=&https://www.zhihu.com/equation?tex=%5CPhi_%7Bmn%7D& alt=&\Phi_{mn}& eeimg=&1&& 的两个不同的元素,所以他们模 &img src=&https://www.zhihu.com/equation?tex=mn& alt=&mn& eeimg=&1&& 不同余)。接下来,&b&中国剩余定理&/b&告诉我们&/p&&blockquote&如果整数 &img src=&https://www.zhihu.com/equation?tex=r_1%2C+r_2& alt=&r_1, r_2& eeimg=&1&& 和正整数 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28n_1%2Cn_2%29%3D1& alt=&\gcd(n_1,n_2)=1& eeimg=&1&& ,同余方程组&br&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7Dx%26%5Cequiv+r_1+%5Cpmod%7Bn_1%7D%5C%5C+x+%26%5Cequiv+r_2+%5Cpmod%7Bn_2%7D%5Cend%7Balign%7D%5C%5C& alt=&\begin{align}x&\equiv r_1 \pmod{n_1}\\ x &\equiv r_2 \pmod{n_2}\end{align}\\& eeimg=&1&&&br&在 &img src=&https://www.zhihu.com/equation?tex=0+%5Cle+x+%3C+n_1n_2& alt=&0 \le x & n_1n_2& eeimg=&1&& 范围内有且只有一个解&/blockquote&&p&通过中国剩余定理我们能够证明 &img src=&https://www.zhihu.com/equation?tex=f& alt=&f& eeimg=&1&& 是满射,所以 &img src=&https://www.zhihu.com/equation?tex=f& alt=&f& eeimg=&1&& 是双射。&/p&&p&所以对于 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%28m%2Cn%29%3D1& alt=&\gcd(m,n)=1& eeimg=&1&& 就有 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%28mn%29%3D%5Cvarphi%28n%29%5Cvarphi%28n%29& alt=&\varphi(mn)=\varphi(n)\varphi(n)& eeimg=&1&& ,假设 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的标准分解为&/p&&p&&img src=&https://www.zhihu.com/equation?tex=n%3D2%5E%7Be_1%7D%5Ctimes3%5E%7Be_2%7D%5Ctimes+5%5E%7Be_3%7D%5Ctimes+%5Ccdots%3D%5Cprod_%7Bk%3D1%7D%5E%5Cinfty+p_k%5E%7Be_k%7D%5C%5C& alt=&n=2^{e_1}\times3^{e_2}\times 5^{e_3}\times \cdots=\prod_{k=1}^\infty p_k^{e_k}\\& eeimg=&1&&&/p&&p&其中 &img src=&https://www.zhihu.com/equation?tex=e_1%2C+e_2%2C%5Cldots+%5Cin+%5Cmathbb%7BN%7D& alt=&e_1, e_2,\ldots \in \mathbb{N}& eeimg=&1&& ,那么&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7D%5Cvarphi%28n%29%26%3D%5Cvarphi%5Cleft%28%5Cprod_%7Bk%3D1%7D%5E%5Cinfty+p_k%5E%7Be_k%7D%5Cright%29%5C%5C%26%3D%5Cprod_%7Bk%3D1%7D%5E%5Cinfty+%5Cvarphi%5Cleft%28p_k%5E%7Be_k%7D%5Cright%29%5C%5C%26%3D%5Cprod_%7Bk%3D1%7D%5E%5Cinfty+p%5E%7Be_k%7D+%5Cleft%28+1-%5Cfrac%7B1%7D%7Bp_k%7D%5Cright%29%5C%5C%26%3D%5Cleft%28%5Cprod_%7Bk%3D1%7D%5E%5Cinfty+p%5E%7Be_k%7D%5Cright%29%5Cprod_%7Bk%3D1%7D%5E%5Cinfty%5Cleft%28+1-%5Cfrac%7B1%7D%7Bp_k%7D%5Cright%29%5C%5C%26%3Dn%5Ctimes%5Cprod_%7Bk%3D1%7D%5E%5Cinfty%5Cleft%28+1-%5Cfrac%7B1%7D%7Bp_k%7D%5Cright%29%5Cend%7Balign%7D%5C%5C& alt=&\begin{align}\varphi(n)&=\varphi\left(\prod_{k=1}^\infty p_k^{e_k}\right)\\&=\prod_{k=1}^\infty \varphi\left(p_k^{e_k}\right)\\&=\prod_{k=1}^\infty p^{e_k} \left( 1-\frac{1}{p_k}\right)\\&=\left(\prod_{k=1}^\infty p^{e_k}\right)\prod_{k=1}^\infty\left( 1-\frac{1}{p_k}\right)\\&=n\times\prod_{k=1}^\infty\left( 1-\frac{1}{p_k}\right)\end{align}\\& eeimg=&1&&&/p&&p&证毕&/p&&hr&&p&序言中题目的解答&/p&&blockquote&求 &img src=&https://www.zhihu.com/equation?tex=BBD& alt=&^{2014}}& eeimg=&1&& 的最后两位数&br&正确答案是 &img src=&https://www.zhihu.com/equation?tex=36& alt=&36& eeimg=&1&&&/blockquote&&p&因为 &img src=&https://www.zhihu.com/equation?tex=100& alt=&100& eeimg=&1&& 和 &img src=&https://www.zhihu.com/equation?tex=2014& alt=&2014& eeimg=&1&& 不互质,我们把它拆成 &img src=&https://www.zhihu.com/equation?tex=100%3D4%5Ctimes+25& alt=&100=4\times 25& eeimg=&1&&&/p&&p&注意到 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%D25%5Cleft%28+1-%5Cfrac%7B1%7D%7B5%7D+%5Cright%29%3D20& alt=&\varphi(25)=25\left( 1-\frac{1}{5} \right)=20& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=BBD+%5Cequiv+BB2014%7D+%5Cbmod+20%7D+%5Cpmod%7B25%7D%5C%5C& alt=&^{2014}} \equiv ^{2014} \bmod 20} \pmod{25}\\& eeimg=&1&&&/p&&p&再拆一次 &img src=&https://www.zhihu.com/equation?tex=20%3D4%5Ctimes+5& alt=&20=4\times 5& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=BCequiv+%5Ctimes+%5Cleft%28+B%5Cvarphi%285%29%7D%5Cright%29%5E%7B503%7D%5Cequiv+%5Cequiv4%5E2%3D16+%5Cpmod%7B5%7D%5C%5C& alt=&}\equiv 2014^2\times \left( 2014^{\varphi(5)}\right)^{503}\equiv 2014^2\equiv4^2=16 \pmod{5}\\& eeimg=&1&&&/p&&p&这里取 &img src=&https://www.zhihu.com/equation?tex=16& alt=&16& eeimg=&1&& 因为要保证它能被 &img src=&https://www.zhihu.com/equation?tex=4& alt=&4& eeimg=&1&& 整除,接着&/p&&p&&img src=&https://www.zhihu.com/equation?tex=BBD%5CequivB16%7D%5Cequiv+14%5E%7B16%7D%5Cequiv36+%5Cpmod%7B100%7D%5C%5C& alt=&^{2014}}\equiv2014^{16}\equiv 14^{16}\equiv36 \pmod{100}\\& eeimg=&1&&&/p&&p&因为 &img src=&https://www.zhihu.com/equation?tex=36& alt=&36& eeimg=&1&& 能被 &img src=&https://www.zhihu.com/equation?tex=4& alt=&4& eeimg=&1&& 整除,所以最后两位是 &img src=&https://www.zhihu.com/equation?tex=36& alt=&36& eeimg=&1&&&/p&&p&&br&&/p&&blockquote&求 &img src=&https://www.zhihu.com/equation?tex=1%5E%7BB2%5E%7BB%5Ccdots+%2B+B2016%7D& alt=&1^{16}+\cdots + }& eeimg=&1&& 除以 &img src=&https://www.zhihu.com/equation?tex=2016& alt=&2016& eeimg=&1&& 的余数&br&正确答案是 &img src=&https://www.zhihu.com/equation?tex=48& alt=&48& eeimg=&1&&&/blockquote&&p&因为 &img src=&https://www.zhihu.com/equation?tex=%5E5%5Ctimes+3%5E2+%5Ctimes+7& alt=&\times 3^2 \times 7& eeimg=&1&& ,我们只需分别找出这个数模 &img src=&https://www.zhihu.com/equation?tex=32%2C+9%2C+7& alt=&32, 9, 7& eeimg=&1&& 的余数&/p&&p&因为 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%C+%7C+%5C+2016& alt=&\varphi(32)\ | \ 2016& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7D1%5E%7BB2%5E%7BB%5Ccdots%2BB%5Cequiv+63%5Ctimes+%5Cleft%281%5E%7BB2%5E%7BB3%5E%7BB%5Ccdots%2B32%5E%7B2016%7D+%5Cright%29+%5Cpmod%7B32%7D%5C%5C+%26%3D63%5Ctimes+%281%5E%7BB3%5E%7BB5%5E%7BB%5Ccdots%2B31%5E%7B%5C%5C%26%5Cequiv+63%5Ctimes+16%5C%5C%26%5Cequiv+16%5Cend%7Balign%7D& alt=&\begin{align}1^{16}+\cdots+}&\equiv 63\times \left(1^{16}+3^{2016}+\cdots+32^{2016} \right) \pmod{32}\\ &=63\times (1^{16}+5^{2016}+\cdots+31^{2016})\\&\equiv 63\times 16\\&\equiv 16\end{align}& eeimg=&1&&&/p&&p&因为 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%287%29%5C+%7C+%5C+2016& alt=&\varphi(7)\ | \ 2016& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7D1%5E%7BB2%5E%7BB%5Ccdots%2BB%5Cequiv+288%5Ctimes+%5Cleft%281%5E%7BB2%5E%7BB%5Ccdots%2B7%5E%7B2016%7D+%5Cright%29+%5Cpmod%7B7%7D%5C%5C+%26%3D288%5Ctimes+%281%5E%7BB2%5E%7BB%5Ccdots%2B6%5E%7B%5C%5C%26%5Cequiv+288%5Ctimes+6%5C%5C%26%5Cequiv+6%5Cend%7Balign%7D& alt=&\begin{align}1^{16}+\cdots+}&\equiv 288\times \left(1^{16}+\cdots+7^{2016} \right) \pmod{7}\\ &=288\times (1^{16}+\cdots+6^{2016})\\&\equiv 288\times 6\\&\equiv 6\end{align}& eeimg=&1&&&/p&&p&因为 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%289%29+%5C+%7C+%5C+2016& alt=&\varphi(9) \ | \ 2016& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balign%7D1%5E%7BB2%5E%7BB%5Ccdots%2BB%5Cequiv+224%5Ctimes+%5Cleft%281%5E%7BB2%5E%7BB%5Ccdots%2B9%5E%7B2016%7D+%5Cright%29+%5Cpmod%7B9%7D%5C%5C+%26%3D224%5Ctimes+%281%5E%7BB2%5E%7BB4%5E%7BB5%5E%7BB7%5E%7BB8%5E%7B%5C%5C%26%5Cequiv+224%5Ctimes+6%5C%5C%26%5Cequiv+3%5Cend%7Balign%7D& alt=&\begin{align}1^{16}+\cdots+}&\equiv 224\times \left(1^{16}+\cdots+9^{2016} \right) \pmod{9}\\ &=224\times (1^{16}+4^{16}+7^{16})\\&\equiv 224\times 6\\&\equiv 3\end{align}& eeimg=&1&&&/p&&p&可以列出同余方程组&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cbegin%7Balignat%7D%7B2%7D+x+%26%5Cequiv+16+%26%26%5Cpmod%7B32%7D%5C%5C+x%26%5Cequiv+6+%26%26%5Cpmod%7B7%7D%5C%5C+x+%26%5Cequiv+3+%26%26%5Cpmod%7B9%7D%5Cend%7Balignat%7D%5C%5C& alt=&\begin{alignat}{2} x &\equiv 16 &&\pmod{32}\\ x&\equiv 6 &&\pmod{7}\\ x &\equiv 3 &&\pmod{9}\end{alignat}\\& eeimg=&1&&&/p&&p&由中国剩余定理,我们解得&/p&&p&&img src=&https://www.zhihu.com/equation?tex=x%5Cequiv+48+%5Cpmod%7BC%5C& alt=&x\equiv 48 \pmod{2016}\\& eeimg=&1&&&/p&&p&&br&&/p&&blockquote&求 &img src=&https://www.zhihu.com/equation?tex=8%5E%7B7%5E%7B6%5E%7B5%5E%7B4%5E%7B3%5E%7B2%5E%7B1%7D%7D%7D%7D%7D%7D%7D& alt=&8^{7^{6^{5^{4^{3^{2^{1}}}}}}}& eeimg=&1&& 的最后三位数&br&正确答案是 &img src=&https://www.zhihu.com/equation?tex=008& alt=&008& eeimg=&1&&&/blockquote&&p&因为&/p&&p&&img src=&https://www.zhihu.com/equation?tex=7%5E%7B4n%7D%3D%%5E%7B2n%7D%5Cequiv+1%5Cpmod%7B100%7D%5C%5C& alt=&7^{4n}=(50-1)^{2n}\equiv 1\pmod{100}\\& eeimg=&1&&&/p&&p&从 &img src=&https://www.zhihu.com/equation?tex=%5Cvarphi%D125%5Cleft%28+1-%5Cfrac%7B1%7D%7B5%7D%5Cright%29%3D100& alt=&\varphi(125)=125\left( 1-\frac{1}{5}\right)=100& eeimg=&1&& 我们能够得到&/p&&p&&img src=&https://www.zhihu.com/equation?tex=8%5E%7B7%5E%7B4n%7D%7D%5Cequiv+8+%5Cpmod%7B125%7D%5C%5C& alt=&8^{7^{4n}}\equiv 8 \pmod{125}\\& eeimg=&1&&&/p&&p&因为 &img src=&https://www.zhihu.com/equation?tex=125+%5C+%7C+%5C+8%5E%7B7%5E%7B4n%7D%7D+-+8& alt=&125 \ | \ 8^{7^{4n}} - 8& eeimg=&1&&
&img src=&https://www.zhihu.com/equation?tex=8+%5C+%7C+%5C+8%5E%7B7%5E%7B4n%7D%7D+-+8& alt=&8 \ | \ 8^{7^{4n}} - 8& eeimg=&1&& 且 &img src=&https://www.zhihu.com/equation?tex=%5Cgcd%288%2C+125%29%3D1& alt=&\gcd(8, 125)=1& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=1000+%5C+%7C+%5C+8%5E%7B7%5E%7B4n%7D%7D-+8%5C%5C& alt=&1000 \ | \ 8^{7^{4n}}- 8\\& eeimg=&1&&&/p&&p&所以&/p&&p&&img src=&https://www.zhihu.com/equation?tex=8%5E%7B7%5E%7B4n%7D%7D%5Cequiv+8%5Cpmod%7BC%5C& alt=&8^{7^{4n}}\equiv 8\pmod{1000}\\& eeimg=&1&&&/p&&hr&&p&最后开几个坑&/p&&ul&&li&Part 2 介绍一下Wilson定理,中国剩余定理,欧几里得算法(即辗转相除法)和其扩展&/li&&li&Part 3 待定,以后有时间就更&/li&&/ul&
这是一个关于初等数论的入门级别学习笔记适合中学数学水平的读者主要内容:唯一分解定理,互质,最大公因数,最小公倍数,同余关系,同余类,完全剩余系,缩剩余系,欧拉函数,欧拉定理,费马小定理,中国剩余定理,逆元。求正整数 3^{83} 的最后两位数看到…
&p&&/p&&figure&&img src=&https://pic1.zhimg.com/v2-158656bfbdc452aacb68_b.jpg& data-rawwidth=&739& data-rawheight=&1676& class=&origin_image zh-lightbox-thumb& width=&739& data-original=&https://pic1.zhimg.com/v2-158656bfbdc452aacb68_r.jpg&&&/figure&&p&——————————————————————————————————————&/p&&p&题目背景:&/p&&p&日本有很多为了考大学而开设的补课班。补课班A拿到题目之后不久,便放弃了当天做出答案的想法并下班。第二天,日本国内所有的补课班(包括河合塾、駿台等顶级补课班)仍然解不出来,这时补课班B给补课班A电话,催促补课班A快点把这道题做出来。补课班A拜托安田教授解题,但仍然解不出来。最后安田教授联系了法国某数学系大学教授,专攻数学奥赛的C教授,又花了两天才把答案写出来。&/p&&p&当年的东京大学考生,最后只有两人做出这道题(情报不确定)。把群论知识运用到初等题目上,这是第一例。&/p&&p&————————————————————————————————————&/p&&p&&br&&/p&&p& 计 &img src=&http://www.zhihu.com/equation?tex=G%3D%28V%2CW%29& alt=&G=(V,W)& eeimg=&1&& 是由“具有有限个点的集合 &img src=&http://www.zhihu.com/equation?tex=V%3D+%5C%7B+P_1%2CP_2%2C%5Ccdot%5Ccdot%5Ccdot+P_n+%5C%7D& alt=&V= \{ P_1,P_2,\cdot\cdot\cdot P_n \}& eeimg=&1&& ”和“在这些点之间连接的线段 &img src=&http://www.zhihu.com/equation?tex=W%3D%5C%7BE_1%2CE_2%2C%5Ccdot%5Ccdot%5Ccdot%2CE_m%5C%7D& alt=&W=\{E_1,E_2,\cdot\cdot\cdot,E_m\}& eeimg=&1&& ” 组成的图形。每一条边 &img src=&http://www.zhihu.com/equation?tex=E_j& alt=&E_j& eeimg=&1&& 都有两个顶点 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_1%7D%2CP_%7Bi_2%7D& alt=&P_{i_1},P_{i_2}& eeimg=&1&&&img src=&http://www.zhihu.com/equation?tex=%28i_1%5Cneq+i_2%29& alt=&(i_1\neq i_2)& eeimg=&1&& 。不考虑除了顶点之外的线段的交点。另外,每一个点都染有白色或黑色。&/p&&p& 例如下面的图 &img src=&http://www.zhihu.com/equation?tex=1& alt=&1& eeimg=&1&& 中, &img src=&http://www.zhihu.com/equation?tex=n%3D5%2Cm%3D4& alt=&n=5,m=4& eeimg=&1&& 。边 &img src=&http://www.zhihu.com/equation?tex=E_i%5C%3B%28i%3D1%2C2%2C%5Ccdot%5Ccdot%5Ccdot+%2C4%29& alt=&E_i\;(i=1,2,\cdot\cdot\cdot ,4)& eeimg=&1&& 的顶点是 &img src=&http://www.zhihu.com/equation?tex=P_i& alt=&P_i& eeimg=&1&& 和 &img src=&http://www.zhihu.com/equation?tex=P_5& alt=&P_5& eeimg=&1&& 。另外, &img src=&http://www.zhihu.com/equation?tex=P_1%2CP_2& alt=&P_1,P_2& eeimg=&1&& 是白色顶点, &img src=&http://www.zhihu.com/equation?tex=P_3%2CP_4%2CP_5& alt=&P_3,P_4,P_5& eeimg=&1&& 是黑色顶点。&/p&&p& 作为起点的图形 &img src=&http://www.zhihu.com/equation?tex=G_1& alt=&G_1& eeimg=&1&& (图 &img src=&http://www.zhihu.com/equation?tex=2& alt=&2& eeimg=&1&&)中, &img src=&http://www.zhihu.com/equation?tex=n%3D1%2C%5C%3Bm%3D0& alt=&n=1,\;m=0& eeimg=&1&& 。其中唯一的顶点是白色的。&/p&&p& 定义以下两种操作,使原来的图形 &img src=&http://www.zhihu.com/equation?tex=G%3D%28V%2CW%29& alt=&G=(V,W)& eeimg=&1&& 变换为新的图形 &img src=&http://www.zhihu.com/equation?tex=G%5Cprime%3D%28V%5Cprime%2CW%5Cprime%29& alt=&G\prime=(V\prime,W\prime)& eeimg=&1&& 。每种操作都会让图形的边数和顶点数各增加 &img src=&http://www.zhihu.com/equation?tex=1& alt=&1& eeimg=&1&& 。&/p&&ul&&li&操作1:&/li&&/ul&&p& 首先选定 &img src=&http://www.zhihu.com/equation?tex=G& alt=&G& eeimg=&1&& 的一个顶点 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_0%7D& alt=&P_{i_0}& eeimg=&1&& 。设 &img src=&http://www.zhihu.com/equation?tex=V%5Cprime& alt=&V\prime& eeimg=&1&& 是由 &img src=&http://www.zhihu.com/equation?tex=V& alt=&V& eeimg=&1&& 增加一个顶点 &img src=&http://www.zhihu.com/equation?tex=P_%7Bn%2B1%7D& alt=&P_{n+1}& eeimg=&1&& 而得到的集合。 &img src=&http://www.zhihu.com/equation?tex=W%5Cprime& alt=&W\prime& eeimg=&1&& 是由 &img src=&http://www.zhihu.com/equation?tex=W& alt=&W& eeimg=&1&& 增加一条边 &img src=&http://www.zhihu.com/equation?tex=E_%7Bn%2B1%7D& alt=&E_{n+1}& eeimg=&1&& 得到的集合。在操作中, &img src=&http://www.zhihu.com/equation?tex=E_%7Bn%2B1%7D& alt=&E_{n+1}& eeimg=&1&& 的两个顶点分别是 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_0%7D& alt=&P_{i_0}& eeimg=&1&& 和 &img src=&http://www.zhihu.com/equation?tex=P_%7Bn%2B1%7D& alt=&P_{n+1}& eeimg=&1&& 。 &img src=&http://www.zhihu.com/equation?tex=G%5Cprime& alt=&G\prime& eeimg=&1&& 其余的边的顶点都和 &img src=&http://www.zhihu.com/equation?tex=G& alt=&G& eeimg=&1&& 完全相同。如果在 &img src=&http://www.zhihu.com/equation?tex=G& alt=&G& eeimg=&1&& 中的 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_0%7D& alt=&P_{i_0}& eeimg=&1&& 的颜色是白色(或黑色)的话,在 &img src=&http://www.zhihu.com/equation?tex=G%5Cprime& alt=&G\prime& eeimg=&1&& 中这个点的颜色就变为黑色(或白色)。除此以外的点的颜色都不变。另外, &img src=&http://www.zhihu.com/equation?tex=P_%7Bn%2B1%7D& alt=&P_{n+1}& eeimg=&1&& 为白色顶点。(示例:图3)&/p&&ul&&li&操作2:&/li&&/ul&&p& 首先选定 &img src=&http://www.zhihu.com/equation?tex=G& alt=&G& eeimg=&1&& 的一条边 &img src=&http://www.zhihu.com/equation?tex=E_%7Bj_0%7D& alt=&E_{j_0}& eeimg=&1&& ,设 &img src=&http://www.zhihu.com/equation?tex=V%5Cprime& alt=&V\prime& eeimg=&1&& 是由 &img src=&http://www.zhihu.com/equation?tex=V& alt=&V& eeimg=&1&& 增加一个顶点 &img src=&http://www.zhihu.com/equation?tex=P_%7Bm%2B1%7D& alt=&P_{m+1}& eeimg=&1&& 而得到的集合。 &img src=&http://www.zhihu.com/equation?tex=W%5Cprime& alt=&W\prime& eeimg=&1&& 是由 &img src=&http://www.zhihu.com/equation?tex=W& alt=&W& eeimg=&1&& 删除一条边 &img src=&http://www.zhihu.com/equation?tex=E_%7Bj_0%7D& alt=&E_{j_0}& eeimg=&1&& ,并增加两条边 &img src=&http://www.zhihu.com/equation?tex=E_%7Bi_1%7D%2C%5C%3BE_%7Bi_2%7D& alt=&E_{i_1},\;E_{i_2}& eeimg=&1&& 而得到的集合。如果设 &img src=&http://www.zhihu.com/equation?tex=E_%7Bj_0%7D& alt=&E_{j_0}& eeimg=&1&& 的两个顶点分别是 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_1%7D%2CP_%7Bi_2%7D& alt=&P_{i_1},P_{i_2}& eeimg=&1&& ,那么对于增加的两条边, &img src=&http://www.zhihu.com/equation?tex=E_%7Bi_1%7D& alt=&E_{i_1}& eeimg=&1&& 的两个顶点分别为 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_1%7D& alt=&P_{i_1}& eeimg=&1&& 和 &img src=&http://www.zhihu.com/equation?tex=P_%7Bm%2B1%7D& alt=&P_{m+1}& eeimg=&1&& ,而 &img src=&http://www.zhihu.com/equation?tex=E_%7Bi_2%7D& alt=&E_{i_2}& eeimg=&1&& 的两个顶点分别为 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_2%7D& alt=&P_{i_2}& eeimg=&1&& 和 &img src=&http://www.zhihu.com/equation?tex=P_%7Bm%2B1%7D& alt=&P_{m+1}& eeimg=&1&& 。 &img src=&http://www.zhihu.com/equation?tex=G%5Cprime& alt=&G\prime& eeimg=&1&& 其余的边的顶点都和 &img src=&http://www.zhihu.com/equation?tex=G& alt=&G& eeimg=&1&& 完全相同。如果在 &img src=&http://www.zhihu.com/equation?tex=G& alt=&G& eeimg=&1&& 中的顶点 &img src=&http://www.zhihu.com/equation?tex=P_%7Bi_1%7D& alt=&P_{i_1}& eeimg=&1&& 是白色(或黑色)的话,在 &img src=&http://www.zhihu.com/equation?tex=G%5Cprime& alt=&G\prime& eeimg=&1&& 中这个点的颜色就变为黑色(或白色)。 对于&img src=&http://www.zhihu.com/equation?tex=P_%7Bi_2%7D& alt=&P_{i_2}& eeimg=&1&& ,也做一样的颜色变换。除此以外的点的颜色都不变。另外, &img src=&http://www.zhihu.com/equation?tex=P_%7Bn%2B1%7D& alt=&P_{n+1}& eeimg=&1&& 为白色顶点。&/p&&p&(示例:图4)&/p&&p& 由起点图形 &img src=&http://www.zhihu.com/equation?tex=G_1& alt=&G_1& eeimg=&1&& 出发,通过这两种操作(有限次)的变换能够得到的图形叫做“可能图形”。请回答以下问题。&/p&&p&&br&&/p&&ol&&li&试证明图 &img src=&http://www.zhihu.com/equation?tex=5& alt=&5& eeimg=&1&& 的三个图形,都是“可能图形”。(注意,这三个图形所有的顶点都是白色。)&/li&&li&设 &img src=&http://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 为自然数,求有 &img src=&http://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 个顶点的棒状图形作为“可能图形”的充分必要条件。(如图6。注意,所有的顶点都是白色)&/li&&/ol&&figure&&img src=&https://pic1.zhimg.com/v2-6ad8eafd5c570bbdf12650_b.jpg& data-rawwidth=&634& data-rawheight=&424& class=&origin_image zh-lightbox-thumb& width=&634& data-original=&https://pic1.zhimg.com/v2-6ad8eafd5c570bbdf12650_r.jpg&&&/figure&&p&&br&&/p&&p&考试时间:三道题150分钟,也就是说这道题50分钟&/p&&p&————————————————————————————————————&/p&&p&宣传一波物理专栏:&a href=&https://zhuanlan.zhihu.com/physics-in-japan& class=&internal&&来看看日本高中的高考理科都考些啥?&/a&顺便求关注。&/p&&p&————————————————————————————————————&/p&&p&&br&&/p&&p&&br&&/p&&p&评论区果然厉害, &a class=&member_mention& href=&http://www.zhihu.com/people/60cdd8d5ddba060ef35a8a& data-hash=&60cdd8d5ddba060ef35a8a& data-hovercard=&p$b$60cdd8d5ddba060ef35a8a&&@灵剑&/a& 和 &a class=&member_mention& href=&http://www.zhihu.com/people/45c6e93a95cca76475b01f& data-hash=&45c6e93a95cca76475b01f& data-hovercard=&p$b$45c6e93a95cca76475b01f&&@Recursion&/a& 都有很厉害的解法。既然这样的话笔者就不放答案里的麻烦解法了…………&/p&&p&&br&&/p&&blockquote&第一问直接构造就行,主要考察是否理解了问题吧……第一个图是从起始点连续执行1两次,第二个是从起始点连续执行1四次,第三个先执行1,再执行2得到白白黑,然后对中间的白执行两次1,对右边的黑执行三次1&br&第二问关键是观察两种操作下图形的某种不变性。我们可以看到,要消除一条线上的黑色顶点,只有两种方法:一种是移到边上,然后执行操作1;一种是把两个黑色顶点凑到一起,然后执行操作2,。这提示我们用黑色顶点之间的距离来定义不变量。对于任意一种分布,我们在两边各补上一个黑色顶点,然后计算:从第一个顶点(最左边补上的)到第二个顶点的距离(相邻两个顶点距离定义为1,隔一个为2,依此类推),加上第三个到第四个的距离,加上第五个到第六个的距离……记为距离A;从第二个到第三个的距离,加上第四个到第五个的距离,加上第六个到第七个的距离……记为距离B。不难发现距离A + 距离B = n + 1。全部顶点都是白色的时候,距离A = n + 1,距离B = 0。下面的讨论中我们并不仔细区分这两种距离,只要注意它们永远是互补的就行,任意两个黑色顶点的距离(包括到两端补上的顶点的)总体现在其中一种距离中。&br&显然我们只能对线的两端使用操作1,则:&br&1. 对线的最右端使用操作1的时候,如果最右边为黑色顶点,则其中一种距离增加2,另一种减少1;如果最右边为白色顶点,同样其中一种距离增加2,另一种减少1。&br&2. 对线的最左端使用操作1的时候,同上,其中一种距离增加2,另一种减少1,然后两个距离互换。在不考虑两个距离的顺序的时候,可以认为仍然是一种距离增加2,另一种减少1&br&3. 对某条边使用操作2的时候,分类讨论不难发现,仍然是某种距离增加2,而另一种减少1&br&&br&注意到无论是增加2,还是减少1,对3取余数的结果都是减少1(从2变为1,从1变为0,从0则变为2),因此两种距离无论使用任何操作,对3取余数的结果都是每次减1,并且在同余的范围内循环。&br&前面说过,全部顶点都是白色的时候,两种距离中有一种为0,因此对3的余数也必须为0。注意到初始状态下有一个顶点,一种距离为2,另一种距离为0,可以得到,当有n个顶点时,一种距离在模3的意义下与3-n同余,另一种距离与1-n同余,因此3-n和1-n中至少有一个为3的倍数,所以n必须是3的倍数,或者n模3余1,即n必须为3k或3k+1的形式。&br&上面证明了必要性,下面通过构造法证明充分性。首先n=1是可行的。对于初始节点连续进行两次操作1得到3个连续白色顶点;先进行操作1,然后进行一次操作2,再对唯一的黑色顶点进行操作1,得到4个连续白色顶点,证明了n=3,n=4可行。如果n=m可行,则:对于最右顶点执行1;对于最右的边执行2;对于最右顶点(黑色)执行1。则得到了n=m+3的可行解。用数学归纳法可以证明,n=3k, n=3k+1都可行。&/blockquote&&p&by 灵剑&/p&&p&&br&&/p&&p&&br&&/p&&blockquote&我们定义一个变换X为新建一个n-1个点的图,若第i条边连接的两个点同色,则变换后点i为白色,否则为黑色。&br&定义X的逆变换为X^{-1}。&br&在X^{-1}变换后的情况下考虑操作1和2。&br&操作1就是将末尾的点反色后再添加一个同色点。&br&考虑操作2,设原来颜色在X^{-1}意义下是abc,操作后就是aBBc(b与B反色)。&br&那么容易发现每次操作后黑白两种颜色数量差在模3意义下不变。&br&初始时黑白色差显然不为0,所以n+1=3k,也就是n=3k-1是不合法的。&br&n=3k和3k-2归纳法构造一下就行了吧。。。&/blockquote&&p&by Recursion&/p&&p&&br&&/p&&p&&br&&/p&&p&至于日本人的解法证明3n+2不可能……他们的思路是这样的:&/p&&p&1.证明操作1和操作2的顺序就算交换,也会得到一样的结果&/p&&p&2.证明操作1之后,一定会变成OXX……XOXX……XO,或者OXX……X,或者XX……XO的形式。其中O代表白球,X代表黑球,X的个数可能为零。&/p&&p&3.设O=120°的旋转矩阵A,X=关于x轴对称的变换矩阵B。&/p&&p&注意:操作2不会让矩阵的乘积发生变化&/p&&p&所以进行完所有的操作1后,矩阵的乘积一定要是A^2才行(注意到A^3=E)&/p&&p&然而进行完所有的操作1后,矩阵的乘积不可能是A^2。&/p&&p&&br&&/p&&p&感觉没有评论区的证法简单,这里就不赘述了&/p&
——————————————————————————————————————题目背景:日本有很多为了考大学而开设的补课班。补课班A拿到题目之后不久,便放弃了当天做出答案的想法并下班。第二天,日本国内所有的补课班(包括河合塾、駿台等顶级补课…
&p&上一篇文章中话说多了,我今天就写一写日本的自主招生题。&/p&&p&这题来自今年东京工业大学AO考试的&b&机械学科&/b&&/p&&p&&b&本题答题时间为60分钟&/b&&/p&&p&&br&&/p&&figure&&img src=&https://pic3.zhimg.com/v2-47ca5ba94ba3bfcfd8ff7a_b.jpg& data-caption=&& data-rawwidth=&645& data-rawheight=&584& class=&origin_image zh-lightbox-thumb& width=&645& data-original=&https://pic3.zhimg.com/v2-47ca5ba94ba3bfcfd8ff7a_r.jpg&&&/figure&&figure&&img src=&https://pic3.zhimg.com/v2-ed1df1c0e88042fbafc4765d_b.jpg& data-caption=&& data-rawwidth=&501& data-rawheight=&605& class=&origin_image zh-lightbox-thumb& width=&501& data-original=&https://pic3.zhimg.com/v2-ed1df1c0e88042fbafc4765d_r.jpg&&&/figure&&figure&&img src=&https://pic3.zhimg.com/v2-f35d59f7af8ee352f435110_b.jpg& data-caption=&& data-rawwidth=&510& data-rawheight=&698& class=&origin_image zh-lightbox-thumb& width=&510& data-original=&https://pic3.zhimg.com/v2-f35d59f7af8ee352f435110_r.jpg&&&/figure&&p&&br&&/p&&p&&br&&/p&&p&数列 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3D1%2C2%2C3%5Ccdot%5Ccdot%5Ccdot+n%29& alt=&x_k\;(k=1,2,3\cdot\cdot\cdot n)& eeimg=&1&& 中的每一项都是 &img src=&https://www.zhihu.com/equation?tex=-1%2C0%2C1& alt=&-1,0,1& eeimg=&1&& 中的一个数。这时根据数列 &img src=&https://www.zhihu.com/equation?tex=x_k& alt=&x_k& eeimg=&1&&定义新的数列 &img src=&https://www.zhihu.com/equation?tex=a_k%5C%3B%28k%3D0%2C1%2C2%2C3%5Ccdot%5Ccdot%5Ccdot+n%29& alt=&a_k\;(k=0,1,2,3\cdot\cdot\cdot n)& eeimg=&1&&。&/p&&p&&br&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=a_0%3D2& alt=&a_0=2& eeimg=&1&&&/p&&p&定义 &img src=&https://www.zhihu.com/equation?tex=a_1%3Da_0%2Bx_1& alt=&a_1=a_0+x_1& eeimg=&1&& ,把这个步骤记做步骤 &img src=&https://www.zhihu.com/equation?tex=1& alt=&1& eeimg=&1&&&/p&&p&定义 &img src=&https://www.zhihu.com/equation?tex=a_2%3Da_1%2Bx_2& alt=&a_2=a_1+x_2& eeimg=&1&& ,把这个步骤记做步骤 &img src=&https://www.zhihu.com/equation?tex=2& alt=&2& eeimg=&1&&&/p&&p&…………………………&/p&&p&定义 &img src=&https://www.zhihu.com/equation?tex=a_k%3Da_%7Bk-1%7D%2Bx_k& alt=&a_k=a_{k-1}+x_k& eeimg=&1&& ,把这个步骤记做步骤 &img src=&https://www.zhihu.com/equation?tex=k& alt=&k& eeimg=&1&&&/p&&p&&br&&/p&&p&这时,考虑使得下面的值 &img src=&https://www.zhihu.com/equation?tex=f%28x_1%2Cx_2%2C%5Ccdot%5Ccdot%5Ccdot%2Cx_n%29& alt=&f(x_1,x_2,\cdot\cdot\cdot,x_n)& eeimg=&1&& 最小的数列 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3D1%2C2%2C3%5Ccdot%5Ccdot%5Ccdot+n%29& alt=&x_k\;(k=1,2,3\cdot\cdot\cdot n)& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=f%28x_1%2Cx_2%2C%5Ccdot%5Ccdot%5Ccdot%2Cx_n%29%3D%5Csum_%7Bk%3D1%7D%5En%28a_k%5E2%2Bx_k%5E2%29& alt=&f(x_1,x_2,\cdot\cdot\cdot,x_n)=\sum_{k=1}^n(a_k^2+x_k^2)& eeimg=&1&&&/p&&p&回答以下问题&/p&&p&&br&&/p&&p&1.&/p&&p&请用 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3D1%2C2%2C3%5Ccdot%5Ccdot%5Ccdot+n%29& alt=&x_k\;(k=1,2,3\cdot\cdot\cdot n)& eeimg=&1&&表示出步骤 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 时得到的 &img src=&https://www.zhihu.com/equation?tex=a_n& alt=&a_n& eeimg=&1&&&/p&&p&2.&/p&&p&请用 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 表示 &img src=&https://www.zhihu.com/equation?tex=a_n& alt=&a_n& eeimg=&1&& 的最大值和最小值&/p&&p&3.&/p&&p&&img src=&https://www.zhihu.com/equation?tex=n%3D2& alt=&n=2& eeimg=&1&& 时,求使得下面函数值最小的&b&所有&/b& &img src=&https://www.zhihu.com/equation?tex=x_1%2Cx_2& alt=&x_1,x_2& eeimg=&1&&的组合&/p&&p&&img src=&https://www.zhihu.com/equation?tex=f%28x_1%2Cx_2%29%3D%5Csum_%7Bk%3D1%7D%5E2%28a_k%5E2%2Bx_k%5E2%29& alt=&f(x_1,x_2)=\sum_{k=1}^2(a_k^2+x_k^2)& eeimg=&1&&&/p&&p&&br&&/p&&p&显然,一直计算到步骤 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 的话,数列 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3D1%2C2%2C3%5Ccdot%5Ccdot%5Ccdot+n%29& alt=&x_k\;(k=1,2,3\cdot\cdot\cdot n)& eeimg=&1&&一共有 &img src=&https://www.zhihu.com/equation?tex=3%5En& alt=&3^n& eeimg=&1&& 种可能性。&/p&&p&当 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 非常大时,如果用枚举法寻找使得 &img src=&https://www.zhihu.com/equation?tex=f%28x_1%2Cx_2%2C%5Ccdot%5Ccdot%5Ccdot%2Cx_n%29& alt=&f(x_1,x_2,\cdot\cdot\cdot,x_n)& eeimg=&1&& 最小的数列 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3D1%2C2%2C3%5Ccdot%5Ccdot%5Ccdot+n%29& alt=&x_k\;(k=1,2,3\cdot\cdot\cdot n)& eeimg=&1&&,所需要的计算量是难以想象的。这里我们需要考虑一个更加有效率的解法。&/p&&p&&br&&/p&&p&步骤 &img src=&https://www.zhihu.com/equation?tex=i-1& alt=&i-1& eeimg=&1&& 中我们可以得到 &img src=&https://www.zhihu.com/equation?tex=a_%7Bi-1%7D& alt=&a_{i-1}& eeimg=&1&& 。这里考虑步骤 &img src=&https://www.zhihu.com/equation?tex=i& alt=&i& eeimg=&1&& 一直到步骤 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 所得到的 &img src=&https://www.zhihu.com/equation?tex=a_i%2Ca_%7Bi%2B1%7D%2C%5Ccdot%5Ccdot%5Ccdot%2Ca_n& alt=&a_i,a_{i+1},\cdot\cdot\cdot,a_n& eeimg=&1&&。定义以下函数 &img src=&https://www.zhihu.com/equation?tex=g_i%28a_%7Bi-1%7D%2Cx_i%2Cx_%7Bi%2B1%7D%2C%5Ccdot%5Ccdot%5Ccdot%2C+x_n%29& alt=&g_i(a_{i-1},x_i,x_{i+1},\cdot\cdot\cdot, x_n)& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=g_i%28a_%7Bi-1%7D%2Cx_i%2Cx_%7Bi%2B1%7D%2C%5Ccdot%5Ccdot%5Ccdot%2C+x_n%29%3D%5Csum_%7Bk%3Di%7D%5En%28a_k%5E2%2Bx_k%5E2%29& alt=&g_i(a_{i-1},x_i,x_{i+1},\cdot\cdot\cdot, x_n)=\sum_{k=i}^n(a_k^2+x_k^2)& eeimg=&1&&&/p&&p&设数列 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3Di%2Ci%2B1%2C%5Ccdot%5Ccdot%5Ccdot%2Cn%29& alt=&x_k\;(k=i,i+1,\cdot\cdot\cdot,n)& eeimg=&1&& 中使得 &img src=&https://www.zhihu.com/equation?tex=g_i& alt=&g_i& eeimg=&1&& 的值最小的数列为 &img src=&https://www.zhihu.com/equation?tex=x_k%5E%2A%5C%3B%28k%3Di%2Ci%2B1%2C%5Ccdot%5Ccdot%5Ccdot%2Cn%29& alt=&x_k^*\;(k=i,i+1,\cdot\cdot\cdot,n)& eeimg=&1&& ,记这个 &img src=&https://www.zhihu.com/equation?tex=g_i& alt=&g_i& eeimg=&1&& 的最小值为 &img src=&https://www.zhihu.com/equation?tex=g_i%5E%2A%28a_%7Bi-1%7D%29& alt=&g_i^*(a_{i-1})& eeimg=&1&&&/p&&p&&br&&/p&&p&也就是&/p&&p&&img src=&https://www.zhihu.com/equation?tex=g_i%5E%2A%28a_%7Bi-1%7D%29%3Dg_i%28a_%7Bi-1%2C%7Dx_i%2Cx_%7Bi%2B1%7D%2C%5Ccdot%5Ccdot%5Ccdot%2C+x_n%29%3D%5Cmin_%7Bx_k%28k%3Di%2Ci%2B1%2C%5Ccdot%5Ccdot%5Ccdot%2Cn%29%7D+g_i%28a_%7Bi-1%7D%2Cx_i%2Cx_%7Bi%2B1%7D%2C%5Ccdot%5Ccdot%5Ccdot%2C+x_n%29& alt=&g_i^*(a_{i-1})=g_i(a_{i-1,}x_i,x_{i+1},\cdot\cdot\cdot, x_n)=\min_{x_k(k=i,i+1,\cdot\cdot\cdot,n)} g_i(a_{i-1},x_i,x_{i+1},\cdot\cdot\cdot, x_n)& eeimg=&1&&&/p&&p&&br&&/p&&p&在这里最右边的 &img src=&https://www.zhihu.com/equation?tex=%5Cmin& alt=&\min& eeimg=&1&& 符号的含义为:&/p&&p&函数 &img src=&https://www.zhihu.com/equation?tex=g_i%28a_%7Bi-1%7D%2Cx_i%2Cx_%7Bi%2B1%7D%2C%5Ccdot%5Ccdot%5Ccdot%2C+x_n%29& alt=&g_i(a_{i-1},x_i,x_{i+1},\cdot\cdot\cdot, x_n)& eeimg=&1&& 在数列 &img src=&https://www.zhihu.com/equation?tex=x_k%5C%3B%28k%3Di%2Ci%2B1%2C%5Ccdot%5Ccdot%5Ccdot%2Cn%29& alt=&x_k\;(k=i,i+1,\cdot\cdot\cdot,n)& eeimg=&1&& 变化时, &img src=&https://www.zhihu.com/equation?tex=g_i& alt=&g_i& eeimg=&1&& 所取得的最小值。&/p&&p&&br&&/p&&p&回答以下问题&/p&&p&&br&&/p&&p&4.&/p&&p&&img src=&https://www.zhihu.com/equation?tex=n%3D2& alt=&n=2& eeimg=&1&& 时,请证明下面的式子:&/p&&p&&img src=&https://www.zhihu.com/equation?tex=g_1%5E%2A%28a_0%29%3D%5Cmin_%7Bx_1%7D%5Cleft%5C%7B+%7Ba_1%5E2%2Bx_1%5E2%2Bg_2%5E%2A%28a_1%29%7D%5Cright%5C%7D+& alt=&g_1^*(a_0)=\min_{x_1}\left\{ {a_1^2+x_1^2+g_2^*(a_1)}\right\} & eeimg=&1&&&/p&&p&5.&/p&&p&由第四问可知下面的式子也成立&/p&&p&那么请用简单的语言解释一下这个式子代表的含义是什么&/p&&p&&img src=&https://www.zhihu.com/equation?tex=g_i%5E%2A%28a_%7Bi-1%7D%29%3D%5Cmin_%7Bx_i%7D%5Cleft%5C%7B%7Ba_i%5E2%2Bx_i%5E2%2Bg_%7Bi%2B1%7D%5E%2A%28a_i%29%7D+%5Cright%5C%7D& alt=&g_i^*(a_{i-1})=\min_{x_i}\left\{{a_i^2+x_i^2+g_{i+1}^*(a_i)} \right\}& eeimg=&1&&&img src=&https://www.zhihu.com/equation?tex=%28i%3D1%2C2%2C%5Ccdot%5Ccdot%5Ccdot%2Cn-1%29& alt=&(i=1,2,\cdot\cdot\cdot,n-1)& eeimg=&1&&&/p&&p&&br&&/p&&p&6.&/p&&p&&img src=&https://www.zhihu.com/equation?tex=n%3D3& alt=&n=3& eeimg=&1&& 的时候,我们想利用第五问中的式子求出使得 &img src=&https://www.zhihu.com/equation?tex=f%28x_1%2Cx_2%2Cx_3%29& alt=&f(x_1,x_2,x_3)& eeimg=&1&& 最小的 &img src=&https://www.zhihu.com/equation?tex=x_1%2Cx_2%2Cx_3& alt=&x_1,x_2,x_3& eeimg=&1&&的值。请注意函数&img src=&https://www.zhihu.com/equation?tex=f%28x_1%2Cx_2%2Cx_3%29& alt=&f(x_1,x_2,x_3)& eeimg=&1&& 也可以写成函数 &img src=&https://www.zhihu.com/equation?tex=g_1%28a_0%2Cx_1%2Cx_2%2Cx_3%29& alt=&g_1(a_0,x_1,x_2,x_3)& eeimg=&1&& (注: &img src=&https://www.zhihu.com/equation?tex=a_0%3D2& alt=&a_0=2& eeimg=&1&&)。请按照以下步骤解题:&/p&&p&&br&&/p&&p&6-1:&/p&&p&首先请对 &img src=&https://www.zhihu.com/equation?tex=a_2& alt=&a_2& eeimg=&1&& 能取到的 &img src=&https://www.zhihu.com/equation?tex=4%2C3%2C2%2C1%2C0& alt=&4,3,2,1,0& eeimg=&1&& 分别计算 &img src=&https://www.zhihu.com/equation?tex=g_3%5E%2A%28a_2%29& alt=&g_3^*(a_2)& eeimg=&1&& ,完成表格 &img src=&https://www.zhihu.com/equation?tex=1-1& alt=&1-1& eeimg=&1&&&/p&&figure&&img src=&https://pic3.zhimg.com/v2-6f071ffbeaf386eedf0ca82_b.jpg& data-caption=&& data-rawwidth=&197& data-rawheight=&186& class=&content_image& width=&197&&&/figure&&p&同样,请对 &img src=&https://www.zhihu.com/equation?tex=a_1& alt=&a_1& eeimg=&1&& 能取到的 &img src=&https://www.zhihu.com/equation?tex=3%2C2%2C1& alt=&3,2,1& eeimg=&1&& ,利用第五问的式子分别计算 &img src=&https://www.zhihu.com/equation?tex=g_2%5E%2A%28a_1%29& alt=&g_2^*(a_1)& eeimg=&1&& ,完成表格 &img src=&https://www.zhihu.com/equation?tex=1-2& alt=&1-2& eeimg=&1&&&/p&&figure&&img src=&https://pic2.zhimg.com/v2-a77ceb5d605a0c0e2bab943eb2933625_b.jpg& data-caption=&& data-rawwidth=&215& data-rawheight=&127& class=&content_image& width=&215&&&/figure&&p&6-2:&/p&&p&请利用表格 &img src=&https://www.zhihu.com/equation?tex=1-1& alt=&1-1& eeimg=&1&& 和表格 &img src=&https://www.zhihu.com/equation?tex=1-2& alt=&1-2& eeimg=&1&& 求出使得函数 &img src=&https://www.zhihu.com/equation?tex=g_1%28a_0%2Cx_1%2Cx_2%2Cx_3%29& alt=&g_1(a_0,x_1,x_2,x_3)& eeimg=&1&& 最小的&b&所有&/b& &img src=&https://www.zhihu.com/equation?tex=x_1%2Cx_2%2Cx_3& alt=&x_1,x_2,x_3& eeimg=&1&&&/p&&p&并说明你是如何利用这两个表格的。&/p&&p&&br&&/p&&p&7.&/p&&p&在第六问如果用枚举法,需要计算的组合一共是 &img src=&https://www.zhihu.com/equation?tex=3%5E3%3D27& alt=&3^3=27& eeimg=&1&& 种。&/p&&p&如果利用第五题中的式子的话,所需要计算的组合一共是表格 &img src=&https://www.zhihu.com/equation?tex=1-1& alt=&1-1& eeimg=&1&& 中求 &img src=&https://www.zhihu.com/equation?tex=g_3%5E%2A%28a_2%29& alt=&g_3^*(a_2)& eeimg=&1&& 的 &img src=&https://www.zhihu.com/equation?tex=15& alt=&15& eeimg=&1&& 种和表格 &img src=&https://www.zhihu.com/equation?tex=1-2& alt=&1-2& eeimg=&1&& 中求 &img src=&https://www.zhihu.com/equation?tex=g_2%5E%2A%28a_1%29& alt=&g_2^*(a_1)& eeimg=&1&& 的 &img src=&https://www.zhihu.com/equation?tex=9& alt=&9& eeimg=&1&& 种,另外加上求 &img src=&https://www.zhihu.com/equation?tex=g_1%28a_0%2Cx_1%2Cx_2%2Cx_3%29& alt=&g_1(a_0,x_1,x_2,x_3)& eeimg=&1&& 的值时 &img src=&https://www.zhihu.com/equation?tex=x_1& alt=&x_1& eeimg=&1&& 的 &img src=&https://www.zhihu.com/equation?tex=3& alt=&3& eeimg=&1&& 种,一共也是 &img src=&https://www.zhihu.com/equation?tex=27& alt=&27& eeimg=&1&& 种。&/p&&p&&br&&/p&&p&虽然在 &img src=&https://www.zhihu.com/equation?tex=n%3D3& alt=&n=3& eeimg=&1&& 时,两种方法所需要计算的组合都是 &img src=&https://www.zhihu.com/equation?tex=27& alt=&27& eeimg=&1&& 种。但当 &img src=&https://www.zhihu.com/equation?tex=n%5Cgeq4& alt=&n\geq4& eeimg=&1&& 时,利用第五题的式子需要计算的组合,要比枚举法所需要计算的组合少很多。请用 &img src=&https://www.zhihu.com/equation?tex=n& alt=&n& eeimg=&1&& 表示出利用第五题的式子所需要计算的组合数。&/p&&p&&br&&/p&&p&&br&&/p&&p&&br&&/p&&p&&br&&/p&&p&&br&&/p&&p&————————————————————————————————————————&/p&
上一篇文章中话说多了,我今天就写一写日本的自主招生题。这题来自今年东京工业大学AO考试的机械学科本题答题时间为60分钟 数列 x_k\;(k=1,2,3\cdot\cdot\cdot n) 中的每一项都是 -1,0,1 中的一个数。这时根据数列 x_k定义新的数列 a_k\;(k=0,1,2,3\cdot\cd…
&p&&/p&&figure&&img src=&https://pic2.zhimg.com/v2-ee4ed53d045c9e03b4d2f8_b.jpg& data-caption=&& data-rawwidth=&672& data-rawheight=&141& class=&origin_image zh-lightbox-thumb& width=&672& data-original=&https://pic2.zhimg.com/v2-ee4ed53d045c9e03b4d2f8_r.jpg&&&/figure&&p&翻译过来&/p&&p&&br&&/p&&p&试证明 &img src=&https://www.zhihu.com/equation?tex=%5Cint_%7B0%7D%5E%7B%5Cpi+%7D+e%5Ex+sin%5E2xdx%3E8& alt=&\int_{0}^{\pi } e^x sin^2xdx&8& eeimg=&1&& ,其中π为圆周率,e为自然对数的底。&/p&&p&&br&&/p&&p&某考生小明:不就是把定积分求出来比较一下大小么,看起来很简单呢。(flag)&/p&&p&——————————————————————————————————————&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cint+e%5Ex+sin%5E2xdx%3D%5Cint%28e%5Ex%29%5E%5Cprime+sin%5E2x+dx%3De%5Ex+sin%5E2xdx-%5Cint+%28e%5Ex%29%5E%5Cprime+cosx%5Ctimes+2sinxdx& alt=&\int e^x sin^2xdx=\int(e^x)^\prime sin^2x dx=e^x sin^2xdx-\int (e^x)^\prime cosx\times 2sinxdx& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%3De%5Ex+sin%5E2xdx-%5Cint+e%5Ex+sin2xdx& alt=&=e^x sin^2xdx-\int e^x sin2xdx& eeimg=&1&&&/p&&p&&br&&/p&&p&下面我们来求 &img src=&https://www.zhihu.com/equation?tex=%5Cint+e%5Exsin2xdx& alt=&\int e^xsin2xdx& eeimg=&1&& 是多少&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%28e%5Excos2x%29%5E%5Cprime%3D-2e%5Exsin2x%2Be%5Excos2x......%281%29& alt=&(e^xcos2x)^\prime=-2e^xsin2x+e^xcos2x......(1)& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%28e%5Exsin2x%29%5E%5Cprime%3D2e%5Excos2x%2Be%5Exsin2x......%282%29& alt=&(e^xsin2x)^\prime=2e^xcos2x+e^xsin2x......(2)& eeimg=&1&&&/p&&p&&br&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%282%29-2%5Ctimes%281%29%3A& alt=&(2)-2\times(1):& eeimg=&1&&&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%28-2e%5Excos2x%2Be%5Exsin2x%29%5E%5Cprime%3D5e%5Exsin2x......%281%29& alt=&(-2e^xcos2x+e^xsin2x)^\prime=5e^xsin2x......(1)& eeimg=&1&&&/p&&p&因此,解得&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cint+e%5Exsin2xdx%3D%5Cfrac%7Be%5Exsin2x-2e%5Excos2x%7D%7B5%7D& alt=&\int e^xsin2xdx=\frac{e^xsin2x-2e^xcos2x}{5}& eeimg=&1&&&/p&&p&所以&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cint+e%5Ex+sin%5E2xdx%3De%5Ex+sin%5E2xdx-%5Cfrac%7Be%5Exsin2x-2e%5Excos2x%7D%7B5%7D& alt=&\int e^x sin^2xdx=e^x sin^2xdx-\frac{e^xsin2x-2e^xcos2x}{5}& eeimg=&1&&&/p&&p&&br&&/p&&p&带入积分上下限&/p&&p&&img src=&https://www.zhihu.com/equation?tex=%5Cint_0%5E%5Cpi+e%5Ex+sin%5E2xdx%3D%280-%5Cfrac%7B0-2e%5E%5Cpi%7D%7B5%7D%29-%280-%5Cfrac%7B0-2%7D%7B5%7D%29%3D%5Cfrac%7B2e%5E%5Cpi-2%7D%7B5%7D& alt=&\int_0^\pi e^x sin^2xdx=(0-\frac{0-2e^\pi}{5})-(0-\frac{0-2}{5})=\frac{2e^\pi-2}{5}& eeimg=&1&&&/p&&p&&br&&/p&&p&小明:嗯,验算了好几次}

我要回帖

更多关于 4619可以被什么整除 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信