大学有机化学重点总结反应

当前位置: 17 含氮芳香化合物
-> 17.4.1 芳香亲核取代反应的苯炔中间体机制
苯炔与芳香亲核取代反应机制17.4.1
芳香亲核取代反应的苯炔中间体机制苯环上不含吸电子取代基的卤代苯,在一般情况下难以发生亲核取代反应。在高温度和高压力,氯苯可被强制水解,道化学公司(Dow
Chemical Company)的化学家们在1928年发明了一项由氯苯生产苯酚的大规模工业制备技术,该技术是将氯苯与稀氢氧化钠溶液在 360℃ 和 20
MPa 压力下反应制取苯酚。  溴苯在液氨中用强碱氨基钾处理也能得到取代产物苯胺。 上述反应与前面讨论过的不同,不是按照加成-消除反应机制进行的,而是发生消除-加成反应,反应过程形成一种有趣的中间体——苯炔。反应的第一步,卤代苯在强碱作用下发生消除反应,形成高活性的中间体苯炔,第二步,亲核试剂对苯炔进行加成得到产物。反应的这两个步骤与前面讨论过的芳香亲核取代反应相同,只是顺序颠倒了,前面讨论过的机理是先加成后消除,而经过苯炔中间体的反应机理是先消除后加成。  同位素标记的溴苯与强碱氨基钾反应的研究结果是对苯炔中间体反应机制的有力证明。
采用 14C 在 1-位标记的溴苯与氨基钾反应,结果得到等量的氨基在 1-位和 2-位取代的两种产物,这说明反应过程中形成了对称的中间体,并且其 1-位和
2-位是等价的,只有苯炔满足这些条件。  用双烯体捕获苯炔发生
Diels-Alder 反应进一步证实了苯炔中间体的存在。
苯炔中间体存在的另一证据是它能与双烯体发生 Diels-Alder 反应,虽然苯炔中间体活性高,无法分离出纯的化合物,但还是可以用双烯体捕获它。在溴苯与氨基钾的反应体系中加入呋喃作为双烯体,结果得到了预期的
Diels-Alder 反应 产物: 邻位或对位有取代基
G 的卤苯在形成苯炔时,分别得到 3-取代苯炔(1)和 4-取代苯炔(2)中间体:  
问题 1: &间位有取代基的卤苯在形成苯炔时,主要形成哪种苯炔中间体?
间位有取代基 G 的卤苯在形成苯炔时,可能形成 3-取代苯炔(1)和 4-取代苯炔(2)中间体中的一种或两种,究竟形成哪种苯炔中间体,主要取决与卤素两个邻位上的氢哪个酸性强,而这两个邻位氢的酸性主要受取代基
G 的诱导效应影响。 卤代苯与氨基钾在液氨中反应,卤素的活泼顺序为:
Br &I &Cl &&F,当 X = Br,I 时,反应速率的决定步骤是失去质子这一步,由于电负性 Br &I,所以卤素的活泼性顺序为
Br &I;当 X = Cl,F时,反应速率的决定步骤是碳卤键(C-X)断裂这一步,由于基团的离去能力 Cl &F,所以此时卤素的活泼性顺序为
问题 2: &3-取代苯炔(1)和 4-取代苯炔(2)中间体与氨基负离子加成时,氨基主要进入哪个位置?
 3-取代苯炔(1)和 4-取代苯炔(2)中间体与氨基负离子加成时,氨基进入的位置主要受取代基
G 诱导效应的影响,氨基加成的方向是以能较稳定的负离子中间体为主要方向。共轭效应对氨基进入的位置影响很小,因为加成所形成的负离子中间体,其电子对的 sp2
轨道与苯环的 p 键并不共轭。当 G 为吸电子取代基时,3-取代苯炔主要生成间位取代产物,4-取代苯炔主要生成对位取代产物。这是因为所生成的负离子中间体(3)或(4)的负电荷离吸电子基团
G 较近,负电荷分散而较稳定。  当
G 为给电子取代基时,3-取代苯炔主要生成邻位取代产物, 4-取代苯炔主要生成间位取代产物。这是因为所生成的负离子中间体(5)或(6)的负电荷离给电子基团
G 较远,比较稳定。  反应实例: 【化学书】献给所有的有机化学专业的同学 | 元素周期表小组 | 果壳网 科技有意思
32206人加入此小组
从某种意义上,自己结束了自己有机化学的学习了。在有机化学中,自己学习到了很多东西,不仅仅是化学方面的知识,更重要的是有机化学特别是有机合成那种高强度的实验训练给我带来了不一样的体验。直到结束才发现,有机合成也没有那么可怕,可怕的是自己的心态在这个过程出现了问题。在毕业之际,趁着自己比较悠闲,自己就把一把自己在化学学习中用过的有机化学书吧。【书名及封面】:【作者】:邢其毅等【出版社】:高等教育出版社【评价】:对于这本有机化学,我想绝大多数学习的有机化学的同学有见过或是用过,俗称“邢大本”,在我刚进实验室的时候,发现连周围的好多师兄师姐都有这套书。这套有机化学取名叫做基础有机化学,一共两本分为上下册,是有机化学入门读物。作者邢其毅先生是我国著名有机化学家,教育家。甚至有人说这事有机化学的入门Bible。【适合人群】:所有的化学孩纸【书名及封面】:普通高等教育十五国家级规划教材:有机化学(上)(第3版)【作者】:胡宏纹【出版日期】:【出版社】:高等教育出版社【评价】:这套书很不错,lz当时用的就是这套。当时用的书是第三版,可是老师却不按照书上的顺利讲。这套书的第二版和第三版的改动比较大。第三版把一些深层次的知识专门放到了下册来讲解,这样既有好处,也有一定的不适应。因为老师讲一个知识点的时候,通常一下子讲完。所以上课的时候我们都得把两本书同时带上,那个累啊……【适合人群】:大学里面需要学习有机化学的孩纸【书名及封面】:普通高等教育“十一五”国家级规划教材:有机化学(上册)【作者】:高坤 ,李灜【出版日期】:【出版社】:科学出版社【评价】:因为机缘巧合,lz用过一段时间这本书。这本的编写者高坤老师和李赢老师,都是处在教学第一线的,所以这本教材应该是他们几位教授多年教学的结晶,也继承了兰州大学有机化学优势学科的传统。【适合人群】:大一大二的孩纸,还有要考兰州大学研究生的同学接下来,看大家的了……——————————————————————————————————————分割线更新【书名及封面】:Advanced Organic Chemistry (Part A and B)【作者】:
【出版日期】:第五版是2008年【出版社】:Springer【评价】:这两本书写的真的很好。分为part A 和Part B。Part A是关于物理有机和机理的,阅读起来比较困难。楼主曾经只把Part B看完了,对于part A 只是看了里面自己感兴趣的章节。这应该是有机化学领域的Bible。如果你对有强烈的兴趣,强烈推荐。【适合人群】:对有机有强烈兴趣又想进阶的,特别对有机化学相关领域的研究生,或者从业者。
有机化学 汪小兰版高等教育出版社适合农林类专业学生阅读包含食品类专业算是比较经典的教材了......对于学习化学与化工类专业的学生可能简单了一点
作 者: (英)怀亚特(Wyatt,P.) 等 著 张艳,王剑波 等 译丛 书 名:现代化学基础丛书《有机合成:策略与控制》可作为有机合成课程的高年级本科生或研究生教材,对于从事有机合成化学研究的科研人员也具有较好的参考价值。作为有机合成化学的教材,《有机合成:策略与控制》深入浅出地介绍了有机合成化学中的选择性问题,碳一碳单键、双键的构建,立体化学调控以及官能团策略。全书以逆合成分析为主线,以一些典型的合成工作为实例,对现代有机合成中的基本策略和方法进行了讨论。全书大多引用近期具有权威性的文献,分析透彻、到位。此外,作者将内容丰富但也十分繁杂的有机合成化学分成若干类别进行论述,使读者在不知不觉中理解一些复杂的理论,清晰地把握核心问题。
中级有机化学 [1 ]作 者: 何树华,张淑琼,何德勇 主编出 版 社: 化学工业出版社本书是建立在基础《有机化学》之上的教材,是对基础有机化学的深化和提高。全书共十章,包括各类有机化合物的命名、立体化学、取代基效应、有机反应活性中间体、取代反应、加成反应、消去反应、氧化还原反应、分子重排反应和有机合成设计简介等内容。每章在详细介绍有关基本知识和内容的同时,精选了大量例题和习题,使读者能够更系统、深刻地理解和掌握有机化学原理。本书可作为高等学校化学、应用化学、药学、化工、生物、材料等专业高年级本科生的教材,也可作为高校有关专业学生系统复习有机化学、备考硕士研究生学习使用。
书 名: 有机人名反应:机理及应用作者:(美国)李(Jie Jack Li) 译者:荣国斌 这是颇有特色的一种。它并不追求齐全,但富有时代感,着眼于反应是否创新及有否应用价值。全书精选了300多个有机人名反应,每个反应均给出一步一步详尽的电子转移机理过程。新版本进一步增加了相关人名反应在合成中的应用,并增补了最新的参考文献,其中有相当部分是综述类论文,以帮助读者更好地理解和认识有机反应,同时为深入应用有机反应提供了方便。这样的编写方式极富参考价值。因此,该书在2002年初版发行后深受市场欢迎,故近年来不断修订补充。这是根据其2009年7月出版的第4版翻译而成。
应用化学专业,科学技术史小组管理员
大部分的pdf全下过了~
我只看过,高鸿宾的那一本。。。
听爸说,学有机化学易赚钱。。。。。。
只看过邢大本和南开的有机化学…来自
化学博士生
引用 的话:听爸说,学有机化学易赚钱。。。。。。我可以负责任地告诉你,除了不赚钱,而且还很伤身体
药学博士生,计算机辅助药物设计
_(:з」∠)_,已经不做合成好多年但仍然对第一本膜拜~
数数大学时代学过的:有机化学、无机化学、物理化学、生物化学、天然药物化学、、、、、记不清了,貌似差不多到10本,苦逼啊。。。
好怀念T T来自
空间信息与数字技术专业
引用 的话:有机化学 汪小兰版高等教育出版社适合农林类专业学生阅读包含食品类专业算是比较经典的教材了......对于学习化学与化工类专业的学生可能简单了一点That's the one!!!!!
引用 的话:That's the one!!!!你们用的这一本么?
蛤蛤,有的学过了。我还是推荐一个叫有机化学结构与功能什么的,老外编的,翻译了好几版了。180多块钱的那种大书。老大了,不过真不错来自
我下来看看来自
化学博士生
引用 的话:蛤蛤,有的学过了。我还是推荐一个叫有机化学结构与功能什么的,老外编的,翻译了好几版了。180多块钱的那种大书。老大了,不过真不错来自你可以按照我们上面的格式 分享
为啥没有南开的?不知道现在出到第几版了。
楼主算是老前辈了,给我们这些还在有机合成里呛水的孩子们一点建议吧
胡宏文二版飘过,推荐大家去小木虫这个帖子看看
化学博士生
引用 的话:楼主算是老前辈了,给我们这些还在有机合成里呛水的孩子们一点建议吧如果在有机合成做的比较顺的话,当然没什么了。但是如果自己不喜欢的话,还是早点跳出来。我就是读完有机合成的硕士,转方向的
无机化学,有机化学,物理化学,结构化学,分析化学,药物化学,天然药物化学,材料化学........以及以上化学的各种实验课程。话说我们专业是不是学得太杂了。
化学博士生
引用 的话:无机化学,有机化学,物理化学,结构化学,分析化学,药物化学,天然药物化学,材料化学........以及以上化学的各种实验课程。话说我们专业是不是学得太杂了。什么专业?
引用 的话:什么专业?应用化学,属于工科的
化学博士生
引用 的话:应用化学,属于工科的应用化学 本科的时候被划在理科,研究生才被划到工科
引用 的话:应用化学,属于工科的我也是应化,但我是理科~
冯骥才的有机也不错呢来自
引用 的话:应用化学,属于工科的应化+1,应化是理科的。。看了这两本有机化学不用愁了的说
正考研复习的孩纸也忙中偷闲来几本这个是我们工科的孩子们用的,我觉得挺好的,机理讲得也很清楚有机化学,作者:R·T· R·N·博伊德 页数:826 出版日期:1994.08 这个是我们一个特别挑剔的老师推荐的,说他们当年学的就是这个书,去图书馆借了看,这个书感觉胜在机理讲得很细致,作者有时还冷一下......图片来自某宝~
引用 的话:应化+1,应化是理科的。。看了这两本有机化学不用愁了的说引用 的话:应化+1,应化是理科的。。看了这两本有机化学不用愁了的说March的高等有机,个人觉得没有Carey的高等有机好,只是Carey的分part A 和part B。机理那本太深奥了,一直没有读完过
空间信息与数字技术专业
引用 的话:March的高等有机,个人觉得没有Carey的高等有机好,只是Carey的分part A 和part B。机理那本太深奥了,一直没有读完过Carey 啊 在图书馆经常路过那里 因为路过外文图书的架子
引用 的话:听爸说,学有机化学易赚钱。。。。。。食品秘方的抄袭
化学博士生
更新了一本经典的有机书
应该有本 人名反应在有机合成中的策略性应用
化学博士生
引用 的话:应该有本 人名反应在有机合成中的策略性应用你说的那本人名反应基本上应该是人名反应的Bible。
(C)果壳网&&&&京ICP证100430号&&&&京网文[-239号&&&&新出发京零字东150005号&&&&
违法和不良信息举报邮箱:&&&&举报电话:&&&&&&&&登录网易通行证
使用网易通行证(含网易邮箱)帐号登录
提交您的投诉或建议
视频画面花屏
视/音频不同步
播放不流畅
分享给朋友:
扫描分享给微信好友和朋友圈
扫一扫分享给微信好友和朋友圈
通过代码可以让这个视频在其它地方上播放!
复制FLASH代码
复制HTML代码
复制页面地址
使用公开课APP下载视频
扫描二维码 手机继续看
扫描二维码在手机上继续观看,
还可分享给您的好友。
没有公开课客户端?
登录后才能查看我的笔记
暂时没有笔记!
确定删除笔记?
即将播放下一集,请您保存当前的笔记哦!
对字幕纠错要登录哦!
内容不能少于3个字
有机分子的结构表达:地球人都知道,有机物的名称是很难搞的,但在正式进入这个话题之前,我们先来看看什么叫有机物;怎么看懂有机物;有机物要怎么表达。
简单烷烃的命名:一二三四五六七八九十,甲乙丙丁戊己庚辛壬癸。这些表示的是碳链上碳原子个数。对于简单的烷烃,只要后面在加个“烷”就可以了。至于环烷嘛,就再在前面加个“环”字咯。把这些单字组合起来,就是具体的有机分子了。例如:甲烷、环戊烷。
带烷基的烷烃的命名:在上集的基础上,我们来“画蛇添足”。如果烷烃的碳链上伸出一些支链,那要怎么办?简单啦。第一,找到主链;第二,命名支链烷基;第三,采用取代基次位号最低的编号方案编号;第四,写出来。搞定!
更正:2-丙基庚烷不叫这个名字!说来实在是抱歉。上集给了大家一个分子叫2-丙基庚烷,让大家画出键线式。后来被发现根本是个BUG啊。哪里是2-丙基庚烷,人家叫4-甲基壬烷!
异、仲、叔碳支链的习惯命名和系统命名:假设分子的骨架连着一个丁基。那么,骨架就可以和丁基两端的碳成键,也可以和中间的碳成键,而且丁基还可以自己有支链。如果这全都叫“丁基”,不就分不清了?!系统命名和习惯命名都能区分它们,你们还可以对比两种方法来记忆。
有机物的命名例题1:前面我们讲过了有一条简单的支链的烷烃的命名。现在我们来挑战又两条支链的,然后再来挑战支链本身带着分支的。最后的名字可能会很长很长,可是,又怎么能难倒我们呢?
有机物的命名例题2:这集还是做有机物命名的练习。要学会给环编号,还有熟悉基团哪个应该写在前面,最后还有习惯命名VS系统命名,命名的方式可是会改变基团出现的顺序哦。
有机物的命名例题3:这集的亮点主要是围绕怎么确定骨架。如果有结构里有两个方向碳数一样,哪条才是主链?如果结构里面又有大环又有长链,骨架是环还是链?
有机物的命名例题4:还是一个大环,然后大环上散落着各种各样的取代基。问题来了,要怎么编号?命名的时候,谁在前面?
有机物的命名例题5:这集我们一反往常,从名字猜结构。有些同学啊,看到那么长一个名字马上就倒吸了一口冷气,但是悄悄告诉大家,由名字猜结构其实反而简单多了。
烯烃的命名:每个碳都有4只手,如果有两个碳同时向对方伸出两只手,这就叫烯烃。但是每个碳都能向同伴伸出两只手啊,所以同一个碳架就会出现很多种不同排列的烯烃。这集的内容就是巧妙地给它们独一无二的名字。
卤代烃的命名:能从主链上分出来的,并不只有碳,卤素也可以。命名很简单,就当它是烷基就行。如果既有卤素,又有双键,双键始终是最大牌的,编号要按它来。P.S.上集出现了一个bug,不知道大家有没有发现。
sp3杂化轨道与σ键:碳有6个电子,未成对的明明只有2个,却可以成4个键。sp3杂化可以很好解释碳的2s轨道上,两个电子怎么分的手,然后没找到对象的电子迅速增到4个,然后到氢里面找到了对象,形成了甲烷(CH4)。
sp2杂化轨道与π键:上集讲了sp3杂化,类似地,还有sp2杂化和sp杂化。什么意思呢?sp2,就是1个s和2个p变成一模一样的3个轨道,叫sp2轨道。然后剩下一个没有杂化的p轨道,就可以形成π键。π键这种东西,老有意思了,它和σ键非常不同,快来看看吧。
纽曼投影式:纽曼式带来的是一种看分子的全新视角,它方便了解分子的构象,从而知道哪些分子更稳定,能量更低。
纽曼投影式2:这集,我们用丁烷来练习一下画纽曼投影式。
环己烷的椅型构象和船型构象:我们很容易想到环己烷上的碳是sp3杂化成键的,那么,键就不在一个平面上,所以环己烷就不是一个平面,它主要有两个形状,一个像椅子,一个像小船。
甲基环己烷的纽曼式:大家也许会好奇,环要怎么画纽曼式呢?反应快的人可能会马上意识到,画两个纽曼式就可以了!而且,在环己烷上面加了个甲基,从前能量相等的两种椅型构象就会马上有了根本区别。
我们看看自己的左右手,无论右手怎么转放到哪里,它始终和左手不一样,这两只手就像是镜子两边的实物和虚像,长得一模一样,但却始终相反。你能想象同样有这样特征的两个分子吗?
了解了什么是手性碳之后,我们来练习一下用我们的“火眼金睛”迅速找出手性碳。秘诀就是:那些四只手都连着不同基团的碳就是目标。不要随便告诉别人哦~
这集要求空间想象力比上集要强,不过跟着Sal老师,一步一步来是不会有问题的!这集还出现了神奇的分子,明明有手性碳,还不止一个,却不是手性分子。这到底是怎么一回事呢?
左手和右手是一对对映体,虽然长相相似,但是它们有太多不一样了。所以如果它们都叫“手”,从名字上我们就区分不开,这样太委屈它们两个了,它们应该有自己的名字。分子也是。所以一个加上“左(S)”,一个加上“右(R)”。
我们接着上集来做点R-S命名的例题。遥想当年,笔者我刚学这玩意儿的时候可痛苦了,总在脑海里吃力地将一个分子翻过来颠过去,也常常忘记顺时针到底是R还是S。所以说,必要的练习还是要做一下的,而且有Sal老师带着,困难的地方也意外顺利了起来。
结构异构体、立体异构体、对映体、非对映体、内消旋体,傻傻分不清楚。它们的具体区别在哪儿?它们存在包含关系吗?
终于结束了手性的讨论,我们开始关注到烯烃。双键的特征,都源于多了个π键,就因为它,双键就不能自由旋转了,导致了出现了新的立体异构。既然人家都出现了,我们出于尊重,怎么也得给人家安个名字是不是?
前面我们学了烯烃的E-Z命名和顺反命名。这集我们来看两个例子,巩固一下。
[第27课]反应机理简介
这集,我们第一次深入来看看HBr怎么和烯烃加成。这个过程到底是如何发生的?又会有哪些产物?产物是均等的,还是有主次之分的呢?为什么?这一大堆的问号,我们快来看看Sal老师怎么解释。
在加成的时候,两个双键碳都为氢留了灯,那么氢该选择谁?Markovnikov先生发现,氢一般都会选择氢本来就多的那个碳,这就叫马氏规则。而这个规则背后的道理,是碳正离子的稳定性。听不懂?那还等什么,快看Sal老师。
在酸性条件下,用水加成烯烃,也遵循马氏规则。但是这个过程特别精彩。酸为什么会变成水,水怎么又变成了酸呢?
我们平时用的塑料袋、塑料杯、吸管等等,都是从氯乙烯变过来的。不过当然不是一个个的氯乙烯小分子,而是无数个氯乙烯手牵手连出来的。牵手的过程跟加成有点像,却比它更有趣哦。
这集我们开始来看亲核取代反应。SN2反应是其中的一种。它能一步就到位,而且会将整个分子反转过来!所以手性碳们真是要尤其小心!
上集我们介绍了SN2反应,名字和它失之毫厘的SN1反应,在机理上会不会谬以千里呢?动动我们的大脑,回想这个数字的意义,它表示速率决定步骤只有“1”种反应物参与。那么就肯定不是一步取代了,而是反应物自己就散成两块了。
SN1和SN2都是亲核取代,那么什么时候发生哪个反应?这里不得不提的一个重要因素就是空间位阻。如果其中一个人块头太大,那么另外一个人要绕到正面和他拥抱就比较难。对,这说的就是SN2。
上集,我们看了反应物的立体化学,这集我们来看产物的。在SN2反应中,亲核试剂和离去基分别在中心碳的两侧,一侧攻击,一侧离去,剩下的基团就顺着翻了个儿。平时翻个儿是不要紧,但如果中心碳是手性的呢?手性会改变吗?
在SN1和SN2的胜负大战中,还有一个影响很大的因素,它就是溶剂。溶剂怎么看?就看它是不是质子性的。如果它能游离出质子,结合亲核试剂,就能减弱试剂的亲核性。想想,这可是对SN2大大的不利啊。
顾名思义,亲核性就是这个东西有多“亲”原子“核”。那么这要怎么判断呢?从何入手?提示:要看电负性。剩下的,就当译者我卖个关子好了。
还记得SN2反应机理吧?还记得碱性和亲核性的概念嘛?什么?有点乱?好吧,这次课程就专门领大家区分一下这两个概念,同学们注意听啦。
这集开始讲消除反应。卤代烃很容易就能发生消除反应生成π键。今天讲的是E2,说时迟那时快,一步就到位了。快来看看到底是怎么做到的吧。
有了E2反应,又怎么能没有E1反应呢。既然前面学过SN1,就很容易推断出,这个E1呀,限速的步骤也只有一种反应物。那么这一步,也是反应物自己先散成两块么?
这个消除反应可真是闹心,到底是要和左边的碳反应呢,还是应该和右边的碳反应?札依采夫规则,5秒解决你的烦恼。它是通过实验发现、经过事实论证的经验规则。它说了,谁的氢少就和谁反应。
仔细想想,E1、E2、SN1、SN2四个反应真的很像。遇到反应物的时候,谁看得出来接下来怎么走啊?但是没关系,它们各自都是有特点的。我们来把条件整理一下,逐个击破。看完十多分钟的视频,也就掌握差不多了。
延续上一集的内容,我们把亲核试剂/碱换一换,看会不会有什么变化?这次还是强碱,却变成了弱亲核试剂,再次表明这两个概念区别。那么结果会有什么不同呢?
这集我们来看一个新例子。按照前两集教的分析思路:先看溶剂能不能游离出质子,这就能基本排除两种反应了;再看反应物的亲核性/碱性如何,答案就出来了,有可能是二选一,也有可能并列前行哦。
这是一种打破从前定势思维的全新反应。自由基,是由化学键均裂,两边各自收回自己的电子形成的反应物。它非常非常活泼,一旦出现,不把所有东西反应个遍绝不甘心。想知道它有多淘气,或者说多可怕么?
在之前的反应里,我们和醇有过几面之缘,但到底什么才算醇?其实啊,醇就是烃基连着羟基,R-OH。大概熟悉一下之后,我们来学学醇的命名。
前面我们学过醇就是R-OH,它有些与众不同的地方。一是,它有点像水,能形成氢键。二是,如果这个-R很大的话,这个氢键就没有什么意义了。为什么呢?都是氧惹的祸。
Resonance有很多有机分子,它们的π轨道都有一种共产主义精神,无私地共享它们的轨道空间和电子。这是什么意思呢?例如苯,它的6个π电子,并不是固定在3个双键上的,而是汇成一个大环漂浮在碳环上,电子能随便出现在这个环的任何一个角落。
水的一个氢变成烃基就叫醇,两个氢都变成烃基就叫醚。醚的命名很有意思,有两种:一种正式的,但是我们一般很少用;另一种常用的,却很直接很神奇,只言片语难以概括。总而言之,点开就对了。
上集我们学会了用醚的两个烃基来给它命名。这集我们来打破定势思维,想象一下,如果氧两边的两个烃基变成同一个烃基呢?注意,不是同样的烃基,是同一个。没错,这样就会形成一个环。这时,上集教的方法貌似就用不上了,那可怎么办好?
前面我们说了,小三角形因为键角太小,电子太靠近了,所以非常不稳定。它们很不情愿这么挤在一起,所以想赶快挣脱环的束缚,于是就发生了开环反应。并且,扮演救世主角色的,正是熟悉的SN2反应。
难道说解救环醚的就只能是SN2反应么?难道SN1反应一点扮演英雄的机会都没有么?非也,非也。适当时候,SN1也有用武之地的。而这个“用武之地”的划分,就值得好好斟酌一番了。
芳香族化合物,这个名字给人一种好感。但其实它跟“芳香”真的没什么关系,所以这种好感完全是莫名的。休克尔定律,就是判断一个东西是不是芳香族的根据。它说,有4n+2个π电子的才算,才能彼此共享,构建和谐社会,例如:6个、10个、14个。否则,就都是不安定的捣蛋鬼,例如:8个的、4个的。真奇怪啊。
我们知道苯已经挺稳定的,我们来看看如果在苯上面嫁接一些基团,会是锦上添花还是落井下石。同时,它们还有很特别的名字哦。
上集我们讲了苯加一些取代基,名字就完全变了。所以这集我们来看看,这些取代基是怎么嫁接上去的。这个过程,是芳香烃专属的亲电取代反应。
上集,Sal老师像肉丝答应杰克那样答应了大家,会给出一个关于芳香烃亲电取代的例子。兑现来了,它就是苯的溴化。要怎么在一个光溜溜的苯环上插上一个溴呢?这个“亲电”具体又是什么意思呢?杰克们,快点开视频吧!
很多人读到了硕士博士,还是“氨”、“胺”、“铵”傻傻分不清楚,这一集主要讲了“胺”的命名。有兴趣的朋友,还可以关注一下英文的区别。有了这集,妈妈再也不用担心我遇到N的命名了。
看了上集的同学,上集的内容和难度还满意吗?现在可汗学院诚意推出“胺的命名2”。作为上集的续集,这集的难度更大,分子更加迂回曲折,甚至还有其它官能团的华丽加盟,欢迎大家继续收看。
前面,我们花了足足两集介绍胺的命名,由此可见,胺在有机届中举足轻重的地位。这集,我们终于可以见识到它绝杀之一——亲核攻击。在Sn2反应中,胺是一种亲核试剂,能对相应的碳放出攻击,使其失去一个离去基团。因此,你又怎么能随便忽略它呢?
上集,我们把伯胺变成了仲胺,那么接下来,仲胺还可以继续反应变成叔胺吗?如果这真的可以实现,那么生成的叔胺呢?叔胺能不能继续烷基化得到季铵?答案,全都在这十分钟里。
我们学过了胺对碳进行亲核攻击发生Sn2反应。那么自然而然,就会产生这么个问题:胺能不能发生Sn1反应呢?如果可以,这两个反应的条件又有什么不同?是胺需要变化,还是被攻击的碳需要变化?到底是谁,要做出什么样的让步,才能达到“两情相悦”,擦出Sn1的火花?
想必大家都听说过“福尔马林”,有些人甚至还知道它其实就是甲醛的水溶液。这很可能就是一部分人对“醛”的最原始的认识。这集,我们就来一探“醛”的真面目,破解它永远在碳链最末端这个谜团,看看它在复杂的碳链中何去何从。
上集讲了醛,这集我们来看看酮。它们两个啊,就像是亲兄弟,有着惊人的相似之处。但是那“基因”上细微的一个小区别,却造成了它们有着大不相同的品性。其一就是,酮还有着有别于以往的称呼方式,它犹如心脏一般的羰基不在端点,而是在中间。
虽然我们现在是认识了醛和酮这两兄弟,但是我们只是能认出它们的面容,对它们本身,知之甚少。这集,活力四射的Sal老师就领大家去看看醛酮的诞生。
上集我们讲了一个非常重要的弗氏酰基化反应,可是最后却遗漏了一直默默奉献的氢,秉承着科学严谨的精神,我们当然要还氢一个名分,反应的结果,一个都不能少。
酮的对称性结构总能给人稳定安心的感觉。但是,其实它还可以通过共振,转身变成活泼的烯醇,进攻别的碳哦。同一个分子的酮式和烯醇式,就像是一个人时闷时骚的两面,随时准备吓你一跳。
没错,就是盐酸硫酸的那种酸,就是能电离出质子变成离子的那种酸,就是能改变pH的那种酸。只不过是有机物,只不过是弱那么一点罢了。我们快来看看这个陌生又熟悉的分子吧。
又讲到了新东西的命名,很多人就一脸鄙视:唉,不就是先找最长的碳链,然后blabla嘛。但是真正做起来往往又错漏百出,面对着同时又几个官能团的分子无从下手,或者看着一个很长的化合物名字开始走神。命名虽然是很简单,确实最基础最繁杂的知识。与其画五分钟找一局你妹,真的还不如做这个小练习来得划算。真的。
酸失羟基醇失氢,在浓硫酸的催化下,酯就华丽丽诞生了!这是在每个基础实验室里面不断上演的经典,但是能理清整个反应机理的人却不多。然而,经典之所以是经典,必然是有它的理由的,就让我们来看看这里面的智慧吧。
作为一种非常常见的羧酸衍生物,它和羧酸的区别又微小又巨大,仅仅是一个羟基和一个氯的不同,两者的转换却是兜兜转转。如果我们是参与其中的电子,那么这肯定能算上小电子的奇幻漂流了。
讲了好几集羧酸和它的衍生物了,是不是有点傻傻分不清楚?这集我们来个大汇总,还会介绍一个新角色哦。看完这集,大家以后就不要再认混它们了,不然某老师可是会伤心的呢。
这几种相似的羧酸衍生物,它们彼此能不能实现转化?转化又有没有方向呢?这是上集最后留给大家的疑问。问题看似繁复,解题的关键却惊人地简单——稳定性。废话少说了,快打开这个答案吧。
化学的世界非常残酷又现实,谁能更稳定存在,大家就会争先恐后地努力成为它。既然在稳定性的排行中,酰胺是TOP1,而酰氯是拖后腿分子,那么是不是就意味着酰氯可以轻而易举地变成最稳定的酰胺咧?
“羟醛”两个字的由来是生成物既有羟基又有醛基。这样说,大家自然会想到是像酯化那样把两个分子连起来就好。没错,但是它没有酯化敷衍,而是确实把两条碳链接到了一起,是增长碳链的首选!
学校:可汗学院
讲师:Salman Khan
授课语言:英文
类型:化学 国际名校公开课 可汗学院
课程简介:与国内一般大学的基础有机化学课程内容大致相同,但是相比起来更简介一些。首先,重点突出,非重点的繁杂内容很多都省去了,其次是讲法更为简单好理解,并非是一打开就让人头晕目眩的复杂。另外,讲课的顺序和很多国内的教材略有不同。本课程是先讲机理,再运用机理理解有机物的反应,而不是将化合物分类中间掺插机理,笔者认为本课程的讲法更有利理解记忆。视频由可汗学院免费提供,详见:(All Khan Academy materials are available for free at )
扫描左侧二维码下载客户端}

我要回帖

更多关于 化学反应容器 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信