板式换热器有什么办法提高空调铜管保压的压力时间和试验压力

换热器的维护检修要点:为了保证换热器长久正常运行,必须对设备进行维护与检修,以保证换热器连续运转,减少事故的发生。在检查过程中,除了查看换热器的运转记录外,主要是通过目视外观检查来弄清是否有异状,其要点如下:一、温度的变动情况测定和调查换热器各流体出入口温度变动及传热量降低的推移量,以推定污染的情况。二、压力损失情况要查清因管内、外附着的生成物而使流体压力损失增大的推移量。三、内部泄漏换热器的内部泄漏有:管子腐蚀、磨损所引起的减薄和穿孔;因龟裂、腐蚀、振动而使扩管部分松脱;因与挡板接触而引起的磨损、穿孔;浮动头盖的紧固螺栓松开、折断以及这些部分的密封垫片劣化等。由于换热器内部泄漏而使两种流体混合,从安全方面考虑应立即对装置进行拆开检查,因为在一般情况下,可能会发生染色、杂质混入而使产品不符合规格,质量降低,甚至发生装置停车的情况,所以通过对换热器低压流体出口的取样和分析来及早发现其内部泄漏是很重要的。四、外部情况对运转中换热器的外部情况检查是以目视来进行的,其项目有: 接头部分的检查:要检查从主体的焊接部分、法兰接头、配管连接部向外泄漏的情况或螺栓是否松开。基础、支脚架的检查:要检查地脚螺栓是否松开,水泥基础是否开裂、脱落,钢支架脚是否异常变形、损伤劣化。保温、保冷装置的检查:要检查保温保冷装置的外部有无损伤情况,特别是覆在外部的防水层以及支脚容易损伤,所以要注意检查。涂料检查:要检查外面涂料的劣化情况。振动检查:检查主体及连接配管有无发生异常振动和异音。如发生异常的情况,则要查明其原因并采取必要的措施。五、测定厚度长期连续运转的换热器,要担心其异常腐蚀,所以按照需要从外部来测定其壳体的厚度并推算腐蚀的推移量。测定时,要使用超声波等非破坏性的厚度测定器。六、操作上的注意事项换热器不能给予剧烈的温度变化,普通的换热器是以运转温度为对象来采取热膨胀措施的,所以急剧的温度变化在局部上会产生热应力,而使扩管部分松开或管子破损等,因此温度升降时特别需要注意。 冷却水温度不要超过所需要的度数:在换热器上是使用海水作为冷却水。冷却水出口温度如达50℃以上,则会促进微生物异常反之、副食生成物的分解附着,并急剧引起管子腐蚀、穿孔、性能降低,所以要注意。要充分注意压力、温度异常上升,要充分了解换热器的设计条件,使用仪表来检查压力、温度有无异常上升。七、拆开检查、维修检查根据换热器的故障、性能降低等有关规定,定期地停止运转并要进行拆开检查,其要点如下:1、拆开时的外观检查为了判明各部分的全面腐蚀、劣化情况,所以拆开后要立即检查污染的程度,水锈的附着情况,并根据需要进行取样分析实验。2、壳体、通道和管板的检查按照一般结构,拆开后的内外侧检查—肉眼检查为主。对腐蚀部分,可用深度计或超声波测厚仪进行壁厚测定,判明是否超出允许范围。其次是通道、隔板往往由于使用中水垢堵塞和压力变化等情况而弯曲,或因垫圈装配不良流体从内隔板前端漏出引起腐蚀。另外管板由于扩管时的应力、管子堵塞和压力变化等影响容易弯曲,所以必须进行抗拉等项目的测定。3、传热管的检查管子内侧缺陷,在距管板l00mm范围内(从管板算起),可用侧径表测定,如超过以上范围要用带放大镜的管内检查器进行肉眼检查。缺陷的大小,可由检查器上的刻度测得,但其深度,用目测就很难正确掌握,管子材质如系非磁性的,可用涡流探伤器测定其腐蚀量。固定管板式换热器的管子缺陷也可用超声波探伤器以水深法来测定。4、装配、复位、测试清扫检查或保养修理后的换热器按照装配顺序、要领,一边进行耐压试验以检查其是否异常,一边即进行装配、复位。换热器发生爆炸的原因1、自制换热器,盲目将换热器结构和材质做较大改动,制造质量差,不符合压力容器规范,设备强度大大降低。2、换热器焊接质量差,特别是焊接接头处未焊透,又未进行焊缝探伤检查、爆破试验,导致焊接接头泄漏或产生疲劳断裂,进而大量易燃易爆流体溢出,发生爆炸。3、由于腐蚀(包括应力腐蚀、晶间腐蚀),耐压强度下降,使管束失效或产生严重泄漏,遇明火发生爆炸。4、换热器做气密性试验时,采用氧气补压或用可燃性精炼气体试漏,引起物理与化学爆炸。5、操作违章、操作失误,阀门关闭,引起超压爆炸。6、长期不进行排污,易燃易爆物质(如三氯化氮)积聚过多,加之操作温度过高导致换热器(如液氯换热器)发生猛烈爆炸。7、过氧爆炸。换热器发生泄漏的原因:换热器发生燃烧爆炸、窒息、中毒和灼伤事故大都是由于泄漏引起的。易燃易爆液体或气体因泄漏而溢出,遇明火将引起燃烧爆炸事故,有毒气体外泄将引起窒息中毒,有强腐蚀流体漏出,将会导致灼伤事故。最容易发生泄漏的部位有焊接接头处、封头与管板连接处,管束与管板连接处和法兰连接处。换热器焊接接头泄漏的直接原因是焊接质量差,如焊缝未焊透、未熔合、存在气孔夹渣、焊缝未经探伤检验,甚至未做爆破试验,只做部分部件的水压试验和采用多次割焊,造成金相改变,内应力增大,强度大大降低。换热器列管泄漏会造成气体走近路,如换热器管内半水煤气泄入管间变换气中,使变换气一氧化碳升高,影响正常生产。造成换热器列管泄漏主要是腐蚀、开停车频繁、温度变化过大、换热器急剧膨胀收缩使花板胀管处泄漏以及设备本身制造缺陷等原因所致。 具体原因如下:1、因腐蚀(如蒸汽雾滴、硫化氢、二氧化碳)严重,引起列管;2、由于开停车频繁,温度变化过大,设备急剧膨胀或收缩,使花板胀管泄漏; 3、换热器本身制造缺陷,焊接接头泄漏;4、因操作温度升高,螺栓伸长,紧固部位松动,引起法兰泄漏;5、因换热器管束组装部位松动、管子振动、开停车和紧急停车造成的热冲击,以及定期检修时操作不当产生的机械冲击而引起泄漏。换热器管束失效的原因:管壳式换热器、合成塔和废热锅炉的管束是薄弱环节,最容易失效。管束失效的形式主要有腐蚀开裂。传热能力迅速下降、碰撞破坏、管子切开、管束泄漏等多种。其常见的原因如下。一、腐蚀换热器多用碳钢制造,冷却水中溶解的氧所致的氧极化腐蚀极为严重,管束寿命往往只有几个月或一二年,加之工作介质又有许多是有腐蚀性的,如小氮肥的碳化塔冷却水箱,在高浓度碳化氨水的腐蚀和碳酸氢氨结晶腐蚀双重作用下,碳钢冷却水箱有时仅使用二三个月就发生泄漏。管子与管板的接头是管束上的易损区,许多管束的失效都是由于接头处的局部腐蚀所致。二、结垢在换热器操作中,管束内外壁都可能会结垢,而污垢层的热阻要比金属管材大得多,从而导致换热能力迅速下降,严重时将会使换热介质的流道阻塞。三、流体流动诱导振动为强化传热和减少污垢层,通常采用增大壳程流体流速的方法。而壳程流体流速增加,产生诱导振动的可能性也将大大增加,从而导致管束中管子的振动,最终致使管束破坏。常见的破坏形式有以下几种:1、碰撞破坏当管子的振幅足够大时,将致使管子之间相互碰撞,位于管束外围的管子还可能和换热器壳体内壁发生碰撞。在碰撞中,管壁磨损变薄,最终发生开裂。2、折流板处管子切开折流板孔和管子之间有径向间隙,当管子发生横向振动的振幅较大时,就会引起管壁与折流板孔的内表面间产生反复碰撞。由于折流板厚度不大,管壁多次、频繁与其接触,将承受很大的冲击载荷,因而在不长的时间内就可能发生管子被切开的局部性破坏。3、管子与管板连接处破坏此种连接结构可视为固定端约束,管子振动产生横向挠曲时;连接处的应力最大,因此,它是最容易产生管束失效的地区之一。此外,壳程接管也多位于管板处,接管附近介质的高速流动更容易在此区域内产生振动。4、材料缺陷的扩展造成失效尽管设计得比较保守,在操作中管束的振动是不可避免的,只不过振幅很小而已。因此,如果管子材料本身存在缺陷(包括腐蚀和磨蚀产生的缺陷),那么在振动引起的交变应力作用下,位于主应力方向上的缺陷裂纹就会迅速扩展,最终导致管子失效。5、振动交变应力场中的拉应力还会成为应力腐蚀的应力源 流动诱导振动引起管子破坏,易发生在挠度相对较大和壳程横向流速较高的区域。此区域通常是U形弯头、壳程进出口接管区、管板区、折流板缺口区和承受压缩应力的管子。四、操作维修不当应力腐蚀只有在拉应力、腐蚀介质和材料敏化温度等条件同时具备的情况下才会发生。换热器发生结垢的原因和处理方法:换热器的结垢每年耗资巨大,严重时会影响安全生产的进行。换热器的结垢是指换热器与不洁净流体相接触而在固体表面上逐渐积聚起来的那层固态物质。结垢对换热设备的影响主要有:由于污垢层具有很低的导热系数,从而增加了传热热阻,降低了换热设备的传热效率;当换热设备表面有结垢层形成时,换热设备中流体通道的过流面积将减少,导致流体流过设备时的阻力增加,从而消耗更多的泵功率,使生产成本增加。根据结垢层沉积的机理,可将污垢分为颗粒污垢、结晶污垢、化学反应污垢、腐蚀污垢、生物污垢等。1、颗粒污垢:悬浮于流体的固体微粒在换热表面上的积聚。这种污垢也包括较大固态微粒在水平换热面上因重力作用的沉淀层,即所谓沉淀污垢和其他胶体微粒的沉积。2、结晶污垢:溶解于流体中的无机盐在换热表面上结晶而形成的沉积物,通常发生在过饱和或冷却时。典型的污垢如冷却水侧的碳酸钙、硫酸钙和二氧化硅结垢层。3、化学反应污垢:在传热表面上进行的化学反应而产生的污垢,传热面材料不参加反应,但可作为化学反应的一种催化剂。4、腐蚀污垢:具有腐蚀性的流体或者流体中含有腐蚀性的杂质对换热表面腐蚀而产生的污垢。通常,腐蚀程度取决于流体中的成分、温度及被处理流体的pH值。5、生物污垢:除海水冷却装置外,一般生物污垢均指微生物污垢。其可能产生粘泥,而粘泥反过来又为生物污垢的繁殖提供了条件,这种污垢对温度很敏感,在适宜的温度条件下,生物污垢可生成可观厚度的污垢层。6、凝固污垢:流体在过冷的换热面上凝固而形成的污垢。例如当水低于冰点而在换热表面上凝固成冰。温度分布的均匀与否对这种污垢影响很大。防止结垢的技术应考虑以下几点:1、防止结垢形成;2、防止结垢后物质之间的粘结及其在传热表面上的沉积;3、从传热表面上除去沉积物。防止结垢采取的措施包括以下几个方面:一、设计阶段应采取的措施在换热器的设计阶段,考虑潜在污垢时的设计,应考虑如下几个方面:1、换热器容易清洗和维修(如板式换热器);2、换热设备安装后,清洗污垢时不需拆卸设备,即能在工业现场进行清洗;3、应取最少的死区和低流速区;4、换热器内流速分布应均匀,以避免较大的速度梯度,确保温度分布均匀(如折流板区);5、在保证合理的压力降和不造成腐蚀的前提下,提高流速有助于减少污垢;6、应考虑换热表面温度对污垢形成的影响。二、运行阶段污垢的控制1、维持设计条件由于在设计换热器时,采用了过余的换热面积,在运行时,为满足工艺需要,需调节流速和温度,从而与设计条件不同,然而应通过旁路系统尽量维持设计条件(流速和温度)以延长运行时间,推迟污垢的发生。2、运行参数控制在换热器运行时,进口物料条件可能变化,因此要定期测试流体中结垢物质的含量、颗粒大小和液体的pH值。3、维修措施良好换热设备维修过程中产生的焊点、划痕等可能加速结垢过程形成,流速分布不均可能加速腐蚀,流体泄漏到冷却水中,可为微生物提供营养,对空气冷却器周围空气中灰尘缺少排除措施,能加速颗粒沉积和换热器的化学反应结垢的形成。用不洁净的水进行水压试验,可引起腐蚀污垢的加速形成。4、使用添加剂针对不同类型结垢机理,可用不同的添加剂来减少或消除结垢形成。如生物灭剂和抑制剂、结晶改良剂、分散剂、絮凝剂、缓蚀剂、化学反应抑制剂和适用于燃烧系统中防止结垢的添加剂等。5、减少流体中结垢物质浓度通常,结垢随着流体中结垢物质浓度的增加而增强,对于颗粒污垢可通过过滤、凝聚与沉淀来去除。对于结疤类物质,可通过离子交换或化学处理来去除。紫外线、超声、磁场、电场和辐射处理紫外线对杀死细菌非常有效,超声(大于20k比)可有效抑制生物污垢,现在的研究还有磁场、电场和辐射处理装置,结论有待进一步研究。三、化学或机械清洗技术化学清洗技术是一种广泛应用的方法,有时在设备运行时,也能进行清洗,但其主要缺点是化学清洗液不稳定,对换热器和连结管处有腐蚀。机械清洗技术通常用在除去壳侧的污垢,先将管束取出,沉浸在不同的液体中,使污垢泡软、松动,然后用机械方法除去垢层。四、机械在线除垢技术1、使用磨粒在流体中加入固体颗粒来摩擦换热表面,以清除污垢,但对换热表面易产生腐蚀。2、海绵胶球连续除垢主要应用于电站凝汽器中冷却水侧的污垢清除,海绵胶球在换热器管内通过球泵打循环,胶球比管子直径略大,通过管子的每只胶球轻微地压迫管壁,在运动中擦除沉积物。3、自动刷洗换热器管道刷洗设施由2个外罩和1个尼龙刷组成,外罩安装在每根管的两端,改变水流方向可使刷子沿管道前后推进刷洗。水流换向方向可使刷子沿管道前推进刷洗。水流换向由压缩空气驱动并定时控制联结在管道上的四通阀来完成。换热器的分类:换热器作为传热设备被广泛用于耗能用量大的领域。随着节能技术的飞速发展,换热器的种类越来越多。适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如一、换热器按传热原理可分为:1、表面式换热器表面式换热器是温度不同的两种流体在被壁面分开的空间里流动,通过壁面的导热和流体在壁表面对流,两种流体之间进行换热。表面式换热器有管壳式、套管式和其他型式的换热器。2、蓄热式换热器蓄热式换热器通过固体物质构成的蓄热体,把热量从高温流体传递给低温流体,热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之达到热量传递的目的。蓄热式换热器有旋转式、阀门切换式等。3、流体连接间接式换热器流体连接间接式换热器,是把两个表面式换热器由在其中循环的热载体连接起来的换热器,热载体在高温流体换热器和低温流体之间循环,在高温流体接受热量,在低温流体换热器把热量释放给低温流体。4、直接接触式换热器直接接触式换热器是两种流体直接接触进行换热的设备,例如,冷水塔、气体冷凝器等。二、换热器按用途分为:1、加热器加热器是把流体加热到必要的温度,但加热流体没有发生相的变2、预热器预热器预先加热流体,为工序操作提供标准的工艺参数。3、过热器过热器用于把流体(工艺气或蒸汽)加热到过热状态。4、蒸发器蒸发器用于加热流体,达到沸点以上温度,使其流体蒸发,一般有相的变化。三、按换热器的结构可分为:可分为:浮头式换热器、固定管板式换热器、U形管板换热器、板式换热器等。换热器的维修:换热器经过一定的生产周期使用后,必须进行检查和维修,才能保证换热器有较高的传热效率,维持正常生产。换热器停车以后,放净流体,拆开端盖(管箱),若是浮头换热器或U型管式换热器则应抽出管束。首先应进行清扫,常用风扫(压缩空气)、水扫或汽扫。清扫干净后,如发现加热管结垢,再装上端盖进行酸洗。酸液的浓度一般配制成6%~8%,酸洗过程中酸液浓度会逐渐下降,要及时补进浓酸以保持上述浓度,当浓度不再下降时,说明已经洗净垢层。然后用水洗净酸液,直到排出的水呈现中性为止。 酸洗后打开端盖进行检查,看胀管端是否有松动,焊缝是否有腐蚀等。酸洗时一定要注意作好防护措施(如穿戴防酸工作服、防酸手套、眼镜等),要注意安全,防止事故发生。如果有些污垢不能清洗干净,也可采用机械清扫工具(如钢刷、土钻等)进行清扫或采用加有石英砂的高压水进行喷刷。 清洗干净后,要进行水压试验,试验时如发现加热管泄漏,则要更换。首先拆下旧管,清洗管板孔,换入新管后重新胀牢,对更换有困难的加热管也可采用堵塞不用的办法,即用铁塞将两端管口塞住(铁塞的锥度为3°~5°),但堵管量不能太多,一般不得超过总管数的10%。否则减少传热面太多,满足不了中心钻孔。这样虽然减少了加热管的横截面,但并不减少传热面积。换热器检修后应进行水压试验,试验压力应按设计图纸上技术要求的规定进行,试压时要缓慢升压并注意观察,有无破裂;有无渗漏;试压后有无残余变形,确认换热器合格方可验收,再投入生产。换热器停车注意事项:换热器停车时的注意事项如下。1、缓慢关闭换热器低温介质入口阀门,此时必须注意低压侧压力不能过低,随即缓慢关闭换热器高温介质入口阀门,缩小压差。在关闭低温介质出口阀门后,再行关闭高温介质的出口阀门。2、换热器冬季停车应放净设备的全部介质,防止冻坏设备。3、换热器设备温度降至室温后,方可拆卸夹紧螺栓,否则密封垫片容易松动。拆卸螺栓时也要对称、交叉进行,然后拆下连接短管,移开活动封头。4、如果板式换热器停用时间较长,尤其是采暖供热系统的板式换热器,过了取暖期后,需停用几个月时间,这时为防止密封垫片永久压缩变形,可将夹紧螺栓稍稍松开,至密封垫片不能自动滑出为止。换热器操作:换热器开始运行时,发现换热器冷热不均,则应检查是否空气没有放净,换热板片是否加错,通常是否堵塞等,并采取相应的有效措施。 发现换热器有两种介质相串通的现象时,尤其是易燃易爆介质,应立即停车,查出并更换其穿孔或裂纹的板片。换热器严格控制温度与压力不超过允许值,否则会加速密封垫片老化。换热器运行中因设备充满介质,在有压力的情况下,不允许坚固夹紧螺栓。紧固换热片的夹紧螺栓及螺母时,应严格控制两封头间的板束距离,否则易损坏换热板片或密封垫片。换热器活动封头上的滑动滚轮,应定期加油防止生锈,以保证拆卸灵活好用。换热器正常情况下,换热器是不必停车的,当阻力降超过允许值,反冲洗又无明显效果,生产能力突然下降,介质互串或介质大量外漏而又无法控制时,才停车查找原因。清理或更换已损坏的换热器零部件。换热器的选择1、要符合工艺条件的要求 换热器从压力、温度、物理化学性质、腐蚀性等工艺条件综合考虑来确定换热器的材质和结构类型。2、传热效率要高 换热器为了提高传热效率,必须提高流体的给热系数,减小热阻。在确定换热器的结构类型时要充分考虑这个问题。如换热的两流体给热系数相差不多,温差不大,可以选择列管式换热器;若温差较大则应选择带膨胀节的列管换热器;若温差很大就应选择浮头式换热器;若两流体给热系数相差很大,其中一种流体为气体,则应选择带翅片管式换热器;如两种流体都是气体,给热系数都很小,则应选择板翅式换热器。3、流体阻力损失要小 换热器流体阻力损失的大小直接关系到动力消耗的多少,增大流速虽然可以提高传热系数,但输送流体的泵或风机的动力消耗太大,经济上也是不合算的,因此流体的流速应适当,可参考有关设计手册确定合理的流体流速。列管式换热器的主要部件和构成列管式换热器是由管子、管板、折流板、壳体、端盖(管箱)等组成。列管式换热器设计制造质量的好坏直接影响换热器的使用期限和生产的连续性。列管式换热器最容易出现的故障就是管子和管板连接部分泄漏。所以必须注意列管式换热器的连接方法和质量。1、列管式换热器壳体 列管式换热器壳体与压力容器一样,根据管间压力、直径大小和温差力决定它的壁厚;由介质的腐蚀情况决定它的材质。直径较小的换热器可采用无缝钢管制成;直径较大时用钢板卷焊而成。2、列管式换热器管板 列管式换热器管板是用来固定管束连接壳体和端盖的一个圆形厚板,它的受力关系比较复杂。厚度计算应根据我国“钢制压力容器设计规定”进行。管板上开有管孔,管孔的排列方式有三角形、正方形和同心圆形。三角形可排列较多的管子,装配较多的管子,传热效果较好,所以常被采用,管子中心距一般在1.25d(d为管子外径)。3、列管式换热器管束 列管式换热器管束的多少和长短由传热面积的大小和换热器结构来决定,它的材质选择主要考虑传热效果、耐腐蚀性能、可焊性等。常用管径和壁厚有¢19×2、¢25×2.5、¢32×3、¢38×3等;管长有3000mm和6000mm;材料有普碳钢或不锈钢等。4、列管式换热器管箱 列管式换热器管箱即换热器的端盖,也叫分配室。用以分配液体和起封头的作用。压力较低时可采用平盖,压力较高时则采用凸形盖,用法兰与管板连接。检修时可拆下管箱对管子进行清洗或更换。5、列管式换热器折流板列管式换热器除上述部件外,列管换热器根据尺寸大小和用途不同,大型换热器还设有拉杆、旁路挡板;冷凝器设有拦液板等等换热器的优缺点:U形管式换热器的管束弯曲成U形,两管口一端固定在管板上,U形管一端不固定,可以自由伸缩,所以没有温差力。U形管式换热器结构简单,只有一个管板,节省材料。但这种换热器管内流体为双程,管束中心有一部分空隙。壳程流体容易走短路。管子不易更换,坏了的管子就只能堵塞不用。U形管式换热器适用于管内走高温、高压、腐蚀性较大,但不易结垢的流体。管外可以走易结垢的流体。 填料函式换热器除了具有内浮头换热器的特点外,因浮在壳体外,泄漏容易发现。但由于填料函式换热器的填料函密封不容易做到很好,所以这种换热器不适用于壳程流体压力很大的情况,也不适用于易燃、易爆、易挥发、有毒及贵重流体介质。浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动。这种浮头式换热器壳体和管束的热膨胀是自由的。浮头式换热器管束可以抽出,便于清洗管间和管内。浮头式换热器缺点是结构复杂,造价高(比固定管板式高20%),在运行中浮头处发生泄漏,不易检查处理。固定管板式列管换热器优点是:固定管板式列管换热器结构简单、紧凑、造价低。固定管板式列管换热器缺点是:固定管板式列管换热器壳程清洗困难,有温差应力存在。固定管板式列管换热器当冷热两种流体的平均温差较大,或壳体和传热管材料热膨胀系数相差较大,热应力超过材料的许用应力时壳体上需设膨胀节。由于膨胀节强度的限制,壳程压力不能太高。换热器的知识换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。 换热器的应用广泛,日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。它还广泛应用于化工、石油、动力和原子能等工业部门。它的主要功能是保证工艺过程对介质所要求的特定温度,同时也是提高能源利用率的主要设备之一。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如氨合成塔内的热交换器。 由于制造工艺和科学水平的限制,早期的换热器只能采用简单的结构,而且传热面积小、体积大和笨重,如蛇管式换热器等。随着制造工艺的发展,逐步形成一种管壳式换热器,它不仅单位体积具有较大的传热面积,而且传热效果也较好,长期以来在工业生产中成为一种典型的换热器。二十世纪20年代出现板式换热器,并应用于食品工业。以板代管制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新型材料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。 混合式换热器是通过冷、热流体的直接接触、混合进行热量交换的换热器,又称接触式换热器。由于两流体混合换热后必须及时分离,这类换热器适合于气、液两流体之间的换热。例如,化工厂和发电厂所用的凉水塔中,热水由上往下喷淋,而冷空气自下而上吸入,在填充物的水膜表面或飞沫及水滴表面,热水和冷空气相互接触进行换热,热水被冷却,冷空气被加热,然后依靠两流体本身的密度差得以及时分离。蓄热式换热器是利用冷、热流体交替流经蓄热室中的蓄热体(填料)表面,从而进行热量交换的换热器,如炼焦炉下方预热空气的蓄热室。这类换热器主要用于回收和利用高温废气的热量。以回收冷量为目的的同类设备称蓄冷器,多用于空气分离装置中。间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 间壁式换热器根据传热面的结构不同可分为管式、板面式和其他型式。管式换热器以管子表面作为传热面,包括蛇管式换热器、套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等;其他型式换热器是为满足某些特殊要求而设计的换热器,如刮面式换热器、转盘式换热器和空气冷却器等。换热器中流体的相对流向一般有顺流和逆流两种。顺流时,入口处两流体的温差最大,并沿传热表面逐渐减小,至出口处温差为最小。逆流时,沿传热表面两流体的温差分布较均匀。在冷、热流体的进出口温度一定的条件下,当两种流体都无相变时,以逆流的平均温差最大顺流最小。在完成同样传热量的条件下,采用逆流可使平均温差增大,换热器的传热面积减小;若传热面积不变,采用逆流时可使加热或冷却流体的消耗量降低。前者可节省设备费,后者可节省操作费,故在设计或生产使用中应尽量采用逆流换热。当冷、热流体两者或其中一种有物相变化(沸腾或冷凝)时,由于相变时只放出或吸收汽化潜热,流体本身的温度并无变化,因此流体的进出口温度相等,这时两流体的温差就与流体的流向选择无关了。除顺流和逆流这两种流向外,还有错流和折流等流向。在传热过程中,降低间壁式换热器中的热阻,以提高传热系数是一个重要的问题。热阻主要来源于间壁两侧粘滞于传热面上的流体薄层(称为边界层),和换热器使用中在壁两侧形成的污垢层,金属壁的热阻相对较小。增加流体的流速和扰动性,可减薄边界层,降低热阻提高给热系数。但增加流体流速会使能量消耗增加,故设计时应在减小热阻和降低能耗之间作合理的协调。为了降低污垢的热阻,可设法延缓污垢的形成,并定期清洗传热面。一般换热器都用金属材料制成,其中碳素钢和低合金钢大多用于制造中、低压换热器;不锈钢除主要用于不同的耐腐蚀条件外,奥氏体不锈钢还可作为耐高、低温的材料;铜、铝及其合金多用于制造低温换热器;镍合金则用于高温条件下;非金属材料除制作垫片零件外,有些已开始用于制作非金属材料的耐蚀换热器,如石墨换热器、氟塑料换热器和玻璃换热器等。固定管板式换热器有哪几部分组成?结构特点是什么?浮头式换热器的浮头有几种形式?固定管板式换热器主要由外壳、封头、管板、管束折流板或支撑板等部件组成。其结构特点是:在壳体中设置有平行管束,管束两端用焊接或胀接的方法固定在管板上,两端管板直接和壳体焊接在一起,壳体的进出管直接焊接在壳体上,装有进口或出口管的封头管箱用螺栓与外壳两管板紧固。管束内根据换热管的长度设置了若干块折流板。这种换热器,管程可以用隔板分成任何程数。浮头换热器的浮头常用的有两种形式。第一种是靠夹钳形半环和若干个压紧螺钉使浮头盖和活动管板密封结合起来,保证管内和管间互不渗漏。第二种是使浮头盖法兰直接和勾圈法兰用螺栓紧固,使浮头盖法兰和活动管板密封贴合,虽然减少了管束的有效传热面积,但密封性可靠,整体也较紧凑。换热器进行水压试验和气密试验的基本原则是什么?换热器进行水压试验和气密试验的基本原则如下:(1)液压试验时,圆筒的薄膜应力不得超过试验温度下材料屈服点的90%;在气压试验时,此应力不得超过试验温度下材料屈服点的80%;(2)制造完工的换热器应按GB150“钢制焊接压力容器技术标准”的规定进行压力试验;(3)换热器需经水压试验合格后方可进行气密性试验;(4)压力试验必须用两个量程相同的并经过校正的压力表。压力表的量程在试验的2倍左右为宜,但不应低于1.5倍和高于4倍的试验压力;(5)换热器的开孔补强圈应在压力试验以前通入0.4~0.5Mpa的压缩空气检查焊缝质量;(6)水压试验和气密性试验的试验介质、试验温度、试验方法要严格按照容器压力试验的有关规定进行;(7)换热压力容器液压试验程序应按GB151规定进行;(8)水压试验和空密性试验在确认无泄漏后,应保压30min。换热器泄漏后如何进行试漏检查?怎样进行堵管?一、试漏检查为了查明管子的泄漏情况,首先要作水压试验,,一般均采用在管子外侧加压力的外压试验。其方法是:把水通入壳体,保持一定时间,用目测检查两端管板处管子的泄漏情况,对漏管做出记录。二、堵管管子本身的泄漏一般情况下是无法修复的,假如泄漏管子的数量不多时,可以用圆锥形的金属堵头将管口两端堵塞,如管程压力较高时,堵紧后再焊住更可靠。堵头的长度一般为管内径的2倍,小端直径应等于0.85倍的内径,锥度为1:10,堵头材料的硬度应低于或等于管子的硬度。用堵管来消除泄漏时堵管数不得超过10%。 换热器腐蚀的主要部位是哪些?为什么会发生腐蚀?换热器腐蚀的主要部位是换热管、管子与管板连接处、管子与折流板交界处、壳体等。腐蚀原因如下:一、换热管腐蚀由于介质中污垢、水垢以及入口介质的涡流磨损易使管子产生腐蚀,特别是在管子入口端的40~50mm处的管端腐蚀,这主要是由于流体在死角处产生涡流扰动有关。二、管子与管板、折流板连接处的腐蚀换热管与管板连接部位及管子与折流板交界处都有应力集中,容易在胀管部位出现裂纹,当管与管板存在间隙时,易产生Cl+的聚积及氧的浓差,从而容易在换热管表面形成点坑或间隙腐蚀使它成为SCC的裂源。管子与折流板交界处的破裂,往往是由于管子长,折流板多,管子稍有弯曲,容易造成管壁与折流板处产生局部应力集中,加之间隙的存在,故其交界处成为应力腐蚀的薄弱环节。三、壳体腐蚀由于壳体及附件的焊缝质量不好也易发生腐蚀,当壳体介质为电解质,壳体材料为碳钢,管束用折流板为铜合金时,易产生电化学腐以这么说,由于试压用工装(假帽)是临时的,并且有时一个假帽用于多个型号的换热器,加上安装质量问题,有时会泄露。但是只要压力稳定的时间足够,如果压力下降,重新加压保持压力即可。至于换热管一般都进行涡流探伤或单根水压试验,只要质量控制程序到位,管子本身不会泄露。因此查看换热管的检验记录,若无问题,假帽密封处轻微渗水,管口不渗水是可以接受的。蚀,把壳体腐蚀穿孔。 试压用工装(假盖子)渗漏很正常,可能是打压胶圈冲水不够,只要打到试验压力能够稳压一定时间,或压力因渗漏略有下降,就没什么问题,如果压力下降的很快,那就要重新打压,试着打到略高于试验压力,像这种换热器管束单根水压试验都要打到15MPa呢,或着再试着给打压胶圈冲冲水。应该没有什么问题。浮头式换热器由于本身的结构特点,耐压实验时应先用试验压环(壳程一端,有时此试验压环要随设备交与用户)和浮头专用工具(壳程另一端,特殊设计制造的带填料函或密封圈的法兰)进行管头试压,然后进行正常的管程试压,最后进行壳程试压。、列管式换热器的分类根据热补偿方式的不同,列管式换热器可分为三类:1、固定管板式固定管板式换热器的两端管板和壳体制成一体,当两流体的温度差较大时,在外壳的适当位置上焊上一个补偿圈,(或膨胀节)。当壳体和管束热膨胀不同时,补偿圈发生缓慢的弹性变形来补偿因温差应力引起的热膨胀。特点:结构简单,造价低廉,壳程清洗和检修困难,壳程必须是洁净不易结垢的物料。2、U形管式U形管式换热器每根管子均弯成U形,流体进、出口分别安装在同一端的两侧,封头内用隔板分成两室,每根管子可自由伸缩,来解决热补偿问题。特点:结构简单,质量轻,适用于高温和高压的场合。管程清洗困难,管程流体必须是洁净和不易结垢的物料。3、浮头式换热器两端的管板,一端不与壳体相连,该端称浮头。管子受热时,管束连同浮头可以沿轴向自由伸缩,完全消除了温差应力。特点:结构复杂、造价高,便于清洗和检修,完全消除温差应力,应用普遍。二、浮头式换热器的结构和特点浮头式换热器主要有壳体、浮动式封头管箱、管束等部件组成。浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动,也就是壳体在管束热膨胀自由,管束与壳体之间没有温差应力。一般浮头设计成可拆卸结构,使管束可自由地抽出和装人。常用的浮头有两种形式,第一种是靠夹钳形半环和若干个压紧螺钉使浮头盖和活动管板密封结合起来,保证管内和管间互不渗漏。另一种是使浮头盖法兰直接和勾圈法兰用螺栓紧固,使浮头盖法兰和活动管板密封贴合,虽然减少了管束的有效传热面积,但密封性可靠,整体较紧凑。浮头式换热器的特点是:1、清洗方便,管束可以抽出,清洗管壳、管程;2、介质间温差不受限值;3、可在较高的温度和压力下工作,一般温度≤450℃,压力≤6.4MPa;4、可用于结垢比较严重的场合;5、可用于管程易腐蚀的场合;6、浮头式换热器的缺点是,小浮头易产生泄漏,金属材料耗量大,结构复杂。百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网92to.com,您的在线图书馆
欢迎转载:
相关推荐:}

我要回帖

更多关于 中央空调保压压力多少 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信