请看下图,(12v DC滤波器)这个简易逆变器12v变220v电路板是怎么实现滤波的?请详细作答,谢谢

【翻译+解读】国外大神拆解苹果绿的充电器+深入解读其设计+绿点的由来(完)
【翻译+解读】国外大神拆解苹果绿的充电器+深入解读其设计
近日偶然在网上找到国外大神ken
Shirriff关于拆解苹果绿的充电器(伟创力版本的)的博客,文章写的很好,功力深厚。E文好的,可以直接看他的博客:
我在这里尝试翻译一下他的文章,并结合自己的知识,如有不妥的,欢迎大家指正。也希望那天国产的也能出精品。
另外,大神也提到了山寨仿绿点充电器,文章标题就用了危险(dangerous)这个字眼,有兴趣的自己去看看,我就翻译了。
在拆解苹果这个小立方体充电器的这个过程,你可以看到一些超前于传统的反激式开关电源技术。功能看起来简单,把交流电(从100v到240v的交流电,适用于任何国家)转化成5V(
5W)的直流电,但里面的电路却是令人惊叹的复杂和富有创新性!
它是如何工作的
iPhone充电器的类型属于开关电源,在1秒内,它将输入的电源来回导通和关断70000次(1秒7万次,即频率为70KHz。),目的是为了满足输出的精准度。对比结构简单的线性电源,开关电源在体积、效率和发热方面有明显的优势。
这里详细说明一下工作原理:(我在这里,分了一下段,方便大家理解。-rollei120注)
-&&&&&&&&&
交流输入的电压经过桥堆后,会转化成高压的直流电(high voltage DC[1],作者标注了参考文献,可在博客的最后面找到。可见作者态度很严谨,关键的地方都注明的出处,如同学术文章,值得我们学习!-rollei120注)。
-&&&&&&&&&
电源控制IC会控制功率三极管(或者MOS管)的导通和关断,将经过桥堆后的高压直流电斩波(即变成频率很高的交变高压电),然后经过反激式变压器(flyback [2] transformer)转化成低压的交流电。
-&&&&&&&&&
该低压交流电经过滤波后,变成我们所需的低压直流电,通过USB接口输入到我们的用电设备。
-&&&&&&&&&
另外,还有反馈电路不断监测输出的电压值,并反馈这些信号给控制IC,以便IC能及时调整开关频率,从而获得精准的电压。
上面的侧视图可以看到一些大的元件。整个充电器由2个电路板组成,每块板在1寸见方左右[3]。顶上那块板是电源的高压电路部分,称之为初级(primary)。底下那块板是低压输出电路部分,称之为次级(secondary)。
输入的交流电,先经过保险电阻。当有灾难性的过载情况时,保险电阻会熔断,切断电源保证安全。
桥堆后面的的2个大电容(黑底白字,带条纹的元件)和电感(绿色的),负责滤波功能,将转换后的电滤成平滑的直流高压电。
接下来,高压直流电会被开关管(三极管或MOS管)切成(chopped)高频交流形式,顶部板子左边那个3脚的元件便是开关三极管。(旁边另外一个三极管,是用来钳位电压尖峰的,后面会解释。)
被开关管整形后的电压进入到反激式变压器(在三极管后面的,黄色的大元件),之后会被变压器转换成低压电,由变压器的低压输出线(两个黄色的线,作者在拆的时候,把线剪断了)送到次级板(secondary board)。
次级板把从变压器输出的低压电转换成直流,滤波后输出到USB接口。
次级板的反馈信号通过灰色的排线反馈回控制IC,以保证输出电压的精准性。
上图中,那个在USB接口上面的(黄色)元件就是反激式变压器。左边那个蓝色的大元件是Y电容[4],用于降低干扰辐射。开关控制IC在变压器上面,即初级板的顶面。
初级PCB板为双面贴片,板的内侧(上图)装配着大尺寸的元件,控制IC在外侧(下图)。(上图中的大元件已被取下,斜体字标示的,这样可以看到大元件下面的小元件。)交流输入端在板的左下角,先经过10欧姆的保险电阻(Fusible resistor),再通过4个二极管组成的桥堆(Bridge diode),转换成直流。两组
R-C缓冲电路(R-C snubber)可以吸收由桥堆产生的EMI干扰信号[6]。电流在经2个大电解电容(Electrolytic filter capacitors)和电感滤波后,生成125-340V的直流电。留意一下,PCB上,连接2个大电容和其他大电流元件的走线的宽度比其他控制器件的要宽许多。(依据U=I X R,为了降低走线的损耗电压和干扰,需要流过大电流的走线,要铺大铜箔,以减少电阻,从而降低U。-rollei120者注)
整个电源由一个8脚的L6565准谐振(quasi-resonant)开关电源芯片控制,意法半导体公司的产品(ST Microsystems)[7]。该控制IC驱动MOSFET开关管的导通和关断,整形后的电压会输入到反激式变压器的初级绕组。控制IC会接受各种输入信号(次级端的反馈电压,提供IC工作的直流电压,变压器初级绕组的电流,和变压器退磁检测)通过内部复杂的集成电路去调整开关频率和动作时间,从而控制电源的输出电压。IC通过电流检测电阻知道流经变压器初级的电流情况,以便在需要时关断开关管,保护电源。
板上的第二个开关管,单独与一些电容和二极管连接,这是谐振钳位电路的一部分,作用是吸收变压器产生的尖峰电压。这种少见的创新电路是伟创力(Flextronics)的专利[8][9]。(看来伟创力也不错,有没有人对该专利有具体了解的?-rollei120注)
该控制IC是需要直流电源供电才能工作的,该电源由辅助电源电路提供,这个部分包括:变压器上的一个分离辅助绕组,二极管,滤波电容。IC需要首先供给电源,才能让变压器开始工作,你或许会让这个先有鸡还是先有蛋的问题绕住。解决的方法是在刚上电时,高压的DC通过启动功率电阻(strarup power resistors)分压后转为低压电,从而提供IC的初始电压,直到变压器开始工作。IC也会利用辅助电源绕组来检测变压器的退磁。
变压器的辅助电源绕组同时也用来做为IC检测退磁数值,以决定何时导通开关管。
secondary)
在次级板上,从变压器出来的低压交流(AC)会被高速肖特基管整流,再经电感和电容滤波,后转成低压直流电,最后通过USB接口输出。绿点充电器中使用了钽电容,这种电容能在小封装尺寸中实现大电容容量。(另外,钽电容有非常高的可靠性,对比普通的电解电容,ESR也比较小。-rollei120注)。
USB输出的数据脚,连接了几个特别的电阻(即我们通常所说的苹果识别电阻。-rollei120注),苹果的设备会依据苹果的协议[10]检测该识别电阻,以决定充电电流的大小。这也是为什么,有些非苹果充电器给苹果设备充电时,屏幕会显示“不支持该充电设备”。
(具体的设备电阻设置值,可以参考我的博客文章: -rollei120注)
次级板上还包含了一个标准的电压监测反馈电路,该电路主要由TL341稳压管和光耦组成。另外还有一个反馈保护电路,该电路监测温度和输出电压,当温度过高或者输出电压超过规定范围的值时,该电路会通知控制IC,关断整个充电器,以起到保护的作用。反馈路径由板上那个灰色的排线完成。
安全绝缘(Isolation)
整个充电器中会有最高的340V直流电,因此安全是充电器设计要考虑的首要因素。高压部分和低压部分需要有一定的隔离,比如拉开两者间的距离(专业上称之为爬电距离和电气间隙),加绝缘片隔离等。国家在法规上对此有严格的监管(比如欧洲的CE,美国的UL,中国的CCC认证。-rollei120注)。虽然这些标准不太好理解,但在高压和低压间保留至少4mm的距离,这是必须的。(关于这个距离的详细解释,可以看他的另一篇关于山寨充电器的文章:)
你或许会认为初级板上的是高压危险部分,次级板应该是安全的低压部分了。但次级板上包含了2个区域:连接初级板的危险区域和安全的低压区域。在这个苹果的充电器里,两个区域的隔离距离大概是6mm,具体见上面的图片。这个隔离区能确保危险的高压不会进入输出区域。
这里有3种元件是跨越隔离区的,这种元件在安全方面有着特殊的设计。首先最关键的元件是变压器,该元件将电能传递到输出端,但不是以直接导线连接的方式实现的。第二种元件是光耦(Optocoupler),他的作用是把次级的信号反馈回初级。光耦内部包含了一个发光的LED和一个光电晶体管,这样他的两端传递的是光信号,而不是直接的电信号(在光耦里的次级侧有一硅胶绝缘层,以起到安全隔离的作用)。第三种元件是Y电容,其作用是跨接高压初级和低压次级,以抑制电磁干扰(EMI)。
上面这张图,我们可以看到几种隔离的技术应用。左测的次级板上有一蓝色的Y电容。
注意次级板的中间少了绝缘隔离的一些元件(作者取走的了,所以图片上没有。)次级板上右侧的灰色排线是连接到初级板的,排线应该属于高压区的元件。两板之间还有另外一个连接,是从变压器出来的一对粗线,连到USB傍边,被剪掉的那两根黄色的线。
下面是一张大概的电路图[13]。(下面是链接的地址)
超小体积的电路板
下面是一张对比图,这样比较直观,对比了电路板和一个硬币,一粒米,一粒芥末(mustard)种子的大小。板上大部分的元件都为贴片封装(SMT),直接贴装在基板上。最小的元件,例如图上标示的贴装电阻,尺寸规格是0402,即0.04寸
X 0.02寸大小。芥末(mustard)种子左边的电阻是稍大尺寸的封装,规格是0805,即0.08寸
X 0.05寸。
拆解变压器
反激式变压器是充电器里的关键器件,体积最大,也可能是所有元件里最贵的[14]。里面是怎样的?我这里拆开来寻找答案。
The transformer measures roughly 1/2" by 1/2" by
1/3"(不知如何翻译,可能是指变压器长宽高的尺寸总是以1/2寸X 1/2寸
X 1/3寸为最小单位。-rollei120注)。里面有3组绕线:初级的输入高压绕组,给控制IC供电的低压辅助绕组,和大电流低电压输出绕组。低压输出绕组会从变压器引出2根线(俗称飞线出来),黑色和白色的两根。其他的绕组的输出端则是直接连在变压器的插脚端,焊在电路板上的。
变压器外包裹有2层绝缘隔离胶布,第二层胶布上有“FLEX”字样,即伟创力的英文缩写。去掉胶布,还有2层金属编织线包裹着变压器,以起到屏蔽作用。
去掉屏蔽层和胶布后,可以把绕组从磁芯上拆开下来,磁芯不是密闭的,而是两个半边磁芯组成。磁芯的材料类似于陶瓷,有易碎的特性,所以拆的时候把磁芯搞坏了(磁芯在组装后,会浸漆,让两半磁芯粘在一起,不容易完整的把磁芯拆开,-rollei120注)。
磁芯由磁性材料制成,铜线绕组围着磁芯的中心柱绕制,磁芯的每一边的体积大概是6mm X 11mm X 4mm。这个磁芯是EQ系列的。磁芯中心的圆柱长度,会比两边的柱子稍微短一些,在两半磁芯和在一起时,中心圆柱之间会留出一个很小的空隙,对该磁芯来说,空隙大概是0.28mm,这是反激式变压器存储磁能的地方。
在2层黄色胶布下面,有一个17圈的绕组,我认为该绕组是起屏蔽作用的,将干扰信号屏蔽到地。
接着往下拆,去掉那个屏蔽绕组和下面的2层胶布后,是一个6圈的绕组,该绕组引出一根黑色和白色的线。该绕组的线材线径很粗,因为是次级绕组,需要输出1A的电流。同时,该绕组的线是三层绝缘的(即绝缘层有3层),这样才能符合UL的安全要求,保证高压与输出完全隔离。那种廉价的充电器,他们只用普通的线和胶布来替代这种3层绝缘线,当发生绝缘缺陷或电源浪涌的情况时,是不会有足够的安全保护的。
再去掉2层胶布后,是一个11圈的绕组,该绕组是给控制IC供电的,线径也比较粗。因为该绕组是在初级侧的,所以绕线不需要用那种3层绝缘线,只需要一层绝缘的漆包线就可以了。
最下面一层,是初级的输入绕组,绕了4层,每层大概绕了23圈。该绕组是高压的输入绕组,因为流过的电流较小,所以线径比较细(相同功率下,电压越高,电流就越小,-rollei120注)。该初级绕组大概是次级绕组圈数的15倍,次级绕组的电压大概是初级电压的1/15,
电流则是初级的15倍。即,变压器将高电压转换成低电压,大电流。
下面这张图是变压器里所有的元件,从左到右,是最外边的胶布到最里面的绕组和变压器的骨架。
苹果的利润
我对于苹果在该充电器上的巨大利润感到非常惊讶。该充电器售价大概是30美元,其利润也几乎是这个价钱了。三星有款类似的小方块充电器,售价大概是6-10美元,同样我也拆开来看了(以后会写个详细的文章介绍)。苹果充电器的质量很好,估计会比普通充电器在成本上多1美元左右[12],但他却要卖20多美元!
苹果2008年充电安全召回
在2008年,苹果召回了iphone充电器,因为充电器的AC插脚存在着可能掉出或折断,并留在插座上。缺陷产品给人的印象是,插脚上只搞了些胶水来固定它。苹果召回了充电器,并从新设计了结构,新产品上会有个绿色的圆点,和之前的缺陷产品区别开来。(原来绿点是这样来的。-rollei120注)
我决定要对比一下旧产品,看看苹果在新设计中到底改进了什么。我拆卸了苹果充电器,三星充电器和一个劣质的充电器,看看AC脚有什么不同。那个劣质的充电器,用钳子用一点力就能把AC脚拔出来,里面没有任何的卡扣,只靠一点摩擦力支撑。三星充电器的插脚,需要借助钳子用较大的扭力,因为插脚上设计有一些金属卡扣去固定在塑壳上,不过最终还是能把插脚拔出来。
当我拆苹果的插脚时,插脚根本就动不了,即使我用尽力气!我只好用上打磨机,想办法切开塑壳,看看到底是什么卡住插脚的。原来是一个插脚上设计有一个很大的金属平台,嵌入到塑壳里面。这样插脚是不可能再出现松动或是掉出来的情况的。下面的图片从左到右,是苹果插头(右边脚的插头上的塑胶壳已经被磨去一半。),劣质充电器插头,只靠一点摩擦力固定,和三星插头,靠一个小的金属卡扣固定。
苹果在召回产品后,所做的努力令我印象深刻。他们不是仅仅改进一点,让插脚稳固。而是改进到,无论任何人,任何情况下,都绝对不可能再出现之前插头掉出的问题。
苹果iphone充电器的特别之处
很显然,苹果充电器的质量是一流的。苹果在EMI(电磁干扰)方面是下足了功夫的,也是为了在充电时不干扰电容屏的正常工作(山寨充电器会让屏幕漂移,相信一些人已经体验到这一点了。-rollei120注)。当我拆充电器的之前,我以为充电器都是些标准的设计,但当我比较了三星和其他几款高品质的充电器之后,发现苹果的设计在几个方面超前对手许多。
在AC的输入线上,有个小的环形磁芯粘在塑壳里(见下面的图片)。桥堆之后有2个大的滤波电容和滤波电感。桥堆上还加了2组R-C缓冲滤波电路,这样的设计,我只是在给音响供电的电源里看到,为了滤除60Hz的谐波[6],可能这样做能让用户在听iTunes时,感觉更好。我拆其他充电器时,都没有看到有用滤波磁芯的,而且通常也只用一个滤波电容。在初级电路板上,有一个接地的金属屏蔽板,覆盖在那些高频元件之上(见图片),这也是我不曾在其他充电器上看到的。变压器里加了屏蔽绕组来吸收EMI干扰。输出端,用了3颗电容,包括2个相对较贵的钽电容[14],和一个电感来滤波,大多数的充电器里只会用1个电容而已,有些充电器连Y电容也省略掉了(有些IC的方案本身是不用Y电容的。-rollei120注)。另外,那个谐振钳位电路更是革命性的。[9]
安全保护方面,苹果的在设计里更是提供了几层防护,我在上面已经介绍过了:超牢固的AC插脚设计,复杂的过温/过压保护关断电路,初级和次级的安全隔离距离已经远超一般标准。
苹果运用了许多技术和努力来把充电器小型化,相比其他品牌充电器却有更高的品质和安全性,当然这也带来了更高的价钱。
如果你对电源感兴趣,请看我的另外一篇文章:小,便宜,但危险的山寨iphone充电器(),那篇文章里,我拆解了一个2.79美金(差不多
18元人民币)的山寨iphone充电器,里面完全不符合安全规则,奉劝大家不要购买。另外,也可以看看这篇文章:苹果并未对电源技术变革,但新的三极管做到了(),那里回顾了开关电源的历史。这里有拆解苹果电源的视频,是
和 .制作的。最后,如果你对电源有兴趣,并且身边有许多闲置不要的电源,那就寄给我,或许我会在拆解后,写个相关的文章。
注释和参考资料(这些我就不翻译了。-rollei120注)
[1] You might wonder why the
DC voltage inside the power supply is so much higher than the line
voltage. The DC voltage is approximately sqrt(2) times the AC
voltage, since the diode charges the capacitor to the peak of the
AC signal. Thus, the input of 100 to 240 volts AC is converted to a
DC voltage of 145 to 345 volts internally. This isn't enough to be
officially
but I'll call it high voltage for convenience.
According to standards, anything under 50 volts AC or 120 V dc is
considered
and is considered safe under normal conditions. But
I'll refer to the 5V output as low voltage for
convenience.
[2] The Apple power supply uses a flyback design, where the
transformer operates "backwards" from how you might expect. When a
voltage pulse is sent into the transformer, the output diode blocks
the output so there is no output - instead a magnetic field builds
up. When the voltage input stops, the magnetic field collapses
causing voltage output from the transformer. Flyback power supplies
are very common for low-wattage power supplies.
[3] The primary board measures about 22.5mm by 20.0mm,
while the secondary board is about 22.2mm by 20.2mm. [4] For more information on X and Y capacitors, see
[5] For clarity, some insulation was removed before taking
the pictures in this article. The Y capacitor was covered with
black heat shrink tubing, there was tape around the side of the
circuit, the fusible resistor was covered with black heat shrink
tubing, and there was a black insulating cover over the USB
connector.
[6] Snubber circuits can be used to reduce 60 Hz hum
generated by the diode bridge in audio power supplies. A detailed
reference on R-C snubbers for audio power supply diodes is , and a sample design is .
[7] The power supply is controlled by the L6565
quasi-resonant SMPS (switched-mode power supply) controller chip
(To be sure, the chip could be something else, but the circuit
exactly matches the L6565 and no other chip I examined.)
To improve efficiency and
reduce interference, the chip uses a technique known as
quasi-resonance, which was first developed in the 1980s. The output
circuit is designed so when the power is switched off, the
transformer voltage will oscillate. When the voltage hits zero, the
transistor switches back on. This is known as Zero Voltage
Switching because the transistor is switched when there is
essentially no voltage across it, minimizing wasted power and
interference during switching. The circuit remains on for a
variable time (depending on the power required), and then switches
back off, repeating the process. (See
information.)
One interesting consequence
of quasi-resonance is the switching frequency varies depending on
the load (with 70kHz as a typical value). Early power supplies such
used simple variable-frequency circuits
to regulate the power. But in the 1980s, these circuits were
replaced by controller ICs that switched at a fixed frequency, but
varied the width of the pulses (known as PWM). Now, advanced
controller ICs have gone back to variable frequency controls. But
in addition, super-cheap knockoff power supplies use variable
frequency circuits almost identical to the Apple II. So both
high-end and low-end chargers are now back to variable
frequency.
It took me a long time to
realize that the "FLEX01" marking on the controller IC indicates
Flextronics, and the X on the chip was from the Flextronics logo:
. I assume the chip has these markings because it is being
manufactured for Flextronics. The "EB936" marking on the chip could
be Flextronics' own part number, or a date code.
[8] I thought Flextronics was just an electronics assembler
and I was surprised to learn that Flextronics does a lot of
innovative development and has literally thousands of patents. I
think Flextronics should get more credit for their designs. (Note
that Flextronics is a different company than Foxconn, which
manufactures iPads and iPhones and has the controversy over working
conditions).
The picture above is from
Flextronics
describes an
adapter that looks just like the iPhone charger. The patent itself
is a grab bag of 63 assorted claims (spring contacts, EMI shields,
thermal potting material), most of which are not actually relevant
to the iPhone charger.
[9] Flextronics
describes the resonance circuit used in the iPhone charger, which
is shown in the following diagram. Transistor Q2 drives the
transformer. Transistor Q1 is the clamp transistor, which directs
the voltage spike from the transformer into resonance capacitor
C13. The innovative part of this circuit is that Q1 doesn't need
special drive circuitry like other a it is
self-powered via the capacitors and diodes. Most charger power
supplies, by contrast, use a simple resistor-capacitor-diode clamp
which dissipates the energy in the resistor.
Later Flextronics patents
extend the resonance circuit with even more diodes and capacitors:
see patents , , and
[10] Apple indicates the charger type through a proprietary
technique of resistances on the USB D+ and D- pins. For details on
USB charging protocols, see my .
[11] One puzzling feature of the Apple charger is the
second feedback circuit monitoring the temperature and output
voltage. This circuit on the secondary board consists of a
thermistor, a second 431 regulator, and a few other components to
monitor the temperature and voltage. The output is connected
through a second optocoupler to more circuitry on other side of the
secondary board. Two transistors are wired in a SCR-like crowbar
latch that will short out the auxiliary power and also shut down
the controller IC. This circuit seems excessively complex for this
task, especially since many controller ICs have this functionality
built in. I could be misunderstanding this circuit, because it
seems that Apple unnecessarily took up space and expensive
components (maybe 25 cents worth) implementing this feature in such
a complex way.
[12] Note the mysterious "For use with information
technology equipment" on the outside of the charger. This indicates
that the charger is covered by the safety standard , which specifies the various isolation distances
required. For a brief overview of isolation distances, see
and some of my .
[13] Some notes on the components used: On the primary
board, the JS4 package is two diodes in a single package. The input
diodes labeled 1JLGE9 are 1J 600V 1A diodes. The switching
transistors are 1HNK60 600V 1A N-channel MOSFETs. The values of
many of the resistors and capacitors are indicated through standard
(two digits and then a power of ten,
giving ohms or picofarads).
On the secondary board, the
"330 j90" capacitor is a Sanyo
tantalum polymer 300mF 6.3V capacitor (j indicates 6.3V and 90 is a
date code). 1R5 indicates a 1.5uH inductor. GB9 is a AS431I low
cathode current adjustable precision shunt regulator, and 431 is a
regular TL431 regulator. SCD34 is a 3A 40V schottky rectifier. YCW
is an unidentified NPN transistor and GYW is an unidentified PNP
transistor. The Y capacitor labeled "MC B221K X1 400V Y1 250V" is a
220nF Y capacitor. The "107A" capacitor is a 100 &F 10V tantalum
capacitor (A indicates 10V). The optocouplers are PS2801-1. (All
these component identifications should be considered tentative,
along with the schematic.)
[14] In order to get a rough idea of how much the
components in the charger cost, I looked up the prices of some
components on . These
prices are the best prices I could find after a brief search, in
quantities of 1000, attempting to match the parts accurately. I
have to assume Apple's prices are considerably better than these
SMD resistor
SMD capacitor
transistor
fusible resistor
600V (1J) diode
thermistor
3.3uF 400V electrolytic capacitor
1.5uH inductor
optocoupler
1HNK60 transistor
100uF tantalum capacitor
330uF tantalum polymer capacitor
(Sanyo POSCAP)
flyback transformer
A few notes. Flyback
transformers are generally custom and prices are all over the
place, so I don't have much confidence in that price. I think the
POSCAP price is high because I was looking for the exact
manufacturer, but tantalum capacitors are fairly expensive in
general. It's surprising how cheap SMD resistors and capacitors
are: a fraction of a penny.
[15] Apple's safety recall of chargers was
showed that the prongs on the charger were attached
only by 1/8" of metal and some glue.
in Wired provides more
[16] Low-quality chargers interfere with touchscreens, and
this is described in detail in . (Customers also
report touchscreen problems from cheap chargers on
and other sites.)
[17] There are many industry designs for USB AC/DC
converters in the 5W range. Sample designs are available from
[18] When a diode or transistor switches, it creates a
voltage spike, which can be controlled by a snubber or clamp
circuit. For a lot of information on snubbers and clamps, see
更多其他充电器等配件的技术文章请看这里:
已投稿到:
以上网友发言只代表其个人观点,不代表新浪网的观点或立场。}

我要回帖

更多关于 自制简易12v功放板 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信