怎样才能细胞dna定量检测报告到纳米金上是否连有DNA

var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
$(".navBg").click(function()
var arrow = $(this).find("span.arrow");
if(arrow.hasClass("up"))
arrow.removeClass("up");
arrow.addClass("down");
else if(arrow.hasClass("down"))
arrow.removeClass("down");
arrow.addClass("up");
$(this).parent().find(".menus").toggle();
var convergedHTML="none";
var url="'"+document.location+"'";
var isKOS="false";
var isConvergeFieldStr="false";
var index=url.indexOf("simple-search");
var filed=$("#tfield1").attr("value");
if(isKOS=="true" && isConvergeFieldStr=="true" && (index!=-1) && (convergedHTML=="" || convergedHTML.indexOf("无")!=-1))
var kosAreaHTML="";
$("#list_2").html("DDC Clustering"+kosAreaHTML);
var covergeURL=document.location+"&converge=true"+"&rnd="+new Date().getTime();
var divConvergeHeightOld=$("#list_2").height();
$.get(covergeURL,
function(data){
if(data.substring(0,2)=="ok")
data=data.substring(3);
$("#list_2").html(data+kosAreaHTML);
$("#list_2").html("无"+kosAreaHTML);
/*if(data.indexOf("无")!=-1)
$("#list_2").height(20);
$("#list_2").width("auto");
var divConvergeHeightNew=$("#list_2").height();
var heightDiff=200-divConvergeHeightO
if(divConvergeHeightNew>=200)
$("#tdConverge").height(200);
$("#LeftPane").height($("#LeftPane").height()+heightDiff);
$("#RightPane").height($("#LeftPane").height());
$("#MySplitter").height($("#LeftPane").height());
$(".vsplitbar").height($("#LeftPane").height());
document.getElementById("LeftPane").style.height=$("#LeftPane").height();
document.getElementById("RightPane").style.height=$("#LeftPane").height();
document.getElementById("MySplitter").style.height=$("#LeftPane").height();
alert(document.getElementById("MySplitter").style.height);
$(".converge").css("cursor","pointer");
$(".converge").css("color","#1F5B97");
$(".converge").mouseover(function(){
$(this).addClass("over");
}).mouseout(function(){
$(this).removeClass("over");})
$(".converge").click(function(){
//$("#tabNav").css("display","none");
$("#tabSearchResult").css("display","none");
$("#convergeResult").html("");
var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
题名: 纳米金结合聚噻吩衍生物比色检测目标靶DNA的方法
专利国别: 中国
专利类型: 发明
中文摘要: 本发明涉及一种纳米金结合聚噻吩衍生物比色检测目标靶DNA的方法,包括:检测试剂(纳米金和聚噻吩衍生物)及探针的准备;目标靶序列的检测等。该发明基于聚噻吩衍生物与ssDNA/dDNA结合时使得DNA-纳米金溶液的稳定性发生变化而引起颜色改变产生信号级联放大的原理,通过颜色转变显示剂以及扩增标签的双重作用实现DNA的高灵敏快速检测,从而建立利用纳米金结合聚噻吩衍生物进行基因直接检测的分析平台。该方法操作简单,不需要特殊的仪器设备,具有特异、快速和高灵敏的特点,可望应用于临床检验医学及环境中靶目标DNA的诊断和
语种: 中文
URI标识: []&&
Appears in Collections:
Recommended Citation:
毛红菊;王树;郭青川;娄新徽;张宏莲;金庆辉;赵建龙,纳米金结合聚噻吩衍生物比色检测目标靶DNA的方法,.X,2010
Google Scholar
CSDL cross search
Related Copyright Policies
Social Bookmarking
Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.&抱歉,没有找到相关的信息
热门搜索排行榜中国科学院长春应用化学研究所机构知识库
Stay signed in
BackCurrent DDC"+this.innerText+"";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data)
{$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
$(".navBg").click(function()
var arrow = $(this).find("span.arrow");
if(arrow.hasClass("up"))
arrow.removeClass("up");
arrow.addClass("down");
else if(arrow.hasClass("down"))
arrow.removeClass("down");
arrow.addClass("up");
$(this).parent().find(".menus").toggle();
var convergedHTML="none";
var url="'"+document.location+"'";
var isKOS="false";
var isConvergeFieldStr="false";
var index=url.indexOf("simple-search");
var filed=$("#tfield1").attr("value");
if(isKOS=="true" && isConvergeFieldStr=="true" && (index!=-1) && (convergedHTML=="" || convergedHTML.indexOf("无")!=-1))
var kosAreaHTML="";
$("#list_2").html("DDC Clustering"+kosAreaHTML);
var covergeURL=document.location+"&converge=true"+"&rnd="+new Date().getTime();
var divConvergeHeightOld=$("#list_2").height();
$.get(covergeURL,
function(data){
if(data.substring(0,2)=="ok")
data=data.substring(3);
$("#list_2").html(data+kosAreaHTML);
$("#list_2").html("无"+kosAreaHTML);
/*if(data.indexOf("无")!=-1)
$("#list_2").height(20);
$("#list_2").width("auto");
var divConvergeHeightNew=$("#list_2").height();
var heightDiff=200-divConvergeHeightO
if(divConvergeHeightNew>=200)
$("#tdConverge").height(200);
$("#LeftPane").height($("#LeftPane").height()+heightDiff);
$("#RightPane").height($("#LeftPane").height());
$("#MySplitter").height($("#LeftPane").height());
$(".vsplitbar").height($("#LeftPane").height());
document.getElementById("LeftPane").style.height=$("#LeftPane").height();
document.getElementById("RightPane").style.height=$("#LeftPane").height();
document.getElementById("MySplitter").style.height=$("#LeftPane").height();
alert(document.getElementById("MySplitter").style.height);
$(".converge").css("cursor","pointer");
$(".converge").css("color","#1F5B97");
$(".converge").mouseover(function(){
$(this).addClass("over");
}).mouseout(function(){
$(this).removeClass("over");})
$(".converge").click(function(){
//$("#tabNav").css("display","none");
$("#tabSearchResult").css("display","none");
$("#convergeResult").html("");
var searchResultHtml=$("#tabSearchResult").html();
var titleThis="";
$.get("converge-by-key",
{"item_id":$(this).attr("id"), "rnd":new Date().getTime()},
function(data){
$("#convergeResult").html(titleThis+data);},
$(".converge").removeClass("selected");
$(this).addClass("selected");
$("#navigation").treeview({
persist: "location",
collapsed: true,
unique: false
题名: DNA在纳米金标上的组装、杂交、检测与银增强
卷号: 19, 期号:9, 页码:879-882关键词:
通讯作者: 李景虹
中文摘要: 利用电化学方法进行DNA的杂交检测.将目标ss-DNA固定在玻碳电极表面,使其与纳米金标记的互补DNA发生杂化反应,通过银增强试剂(该种试剂可以使银在纳米金表面沉积,达到信号增强的效果)在纳米金上沉积银,形成银包金的核壳结构.在酸性介质中沉积的银被氧化释放,以离子状态存在于溶液中.用阳极溶出伏安法(ASV)检测银离子从而达到间接检测目标DNA的目的.测定结果表明,ss-DNA的浓度在100~1 000 pmol·L~(-1)范围内有非常好的线性关系,检测限为10 pmol·L~(-1).
语种: 中文
Appears in Collections:
Files in This Item:
File Name/ File Size
Content Type
47.pdf(225KB)----开放获取--
Recommended Citation:
王美佳;纪小会;王连英;刘敏;刘艳梅;白玉白;李铁津;李景虹.DNA在纳米金标上的组装、杂交、检测与银增强,物理化学学报, ):879-882
Google Scholar
CSDL cross search
Related Copyright Policies
Social Bookmarking
此文件暂不支持浏览
Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.&<meta name="DC.Description" xml:lang="cn" content="金纳米颗粒拥有独特的光学和电学性质, 被广泛地应用于分析检测、催化和生物医学等领域. 通过改变尺寸和形状能够可控地调节金纳米颗粒的等离子体共振吸收峰, 进而改变金纳米颗粒的光学和电学特性. 而在金纳米表面修饰DNA, 使金纳米颗粒具有DNA的特异性识别能力和可寻址能力, 则能够有效地扩展金纳米颗粒在纳米组装、环境监测、疾病诊断、药物运输和纳米颗粒合成方面的应用. 本文系统总结了不同大小金纳米颗粒的合成方法, 探讨如何在金纳米颗粒上快速修饰DNA, 研究了影响金纳米颗粒表面DNA的修饰密度、功能及稳定性的因素, 并描述了DNA功能化的金纳米颗粒在检测、组装、载药和纳米颗粒合成中的应用. 本文将进一步加深人们对DNA功能化金纳米颗粒的制备、性质及应用的了解, 为DNA功能化金纳米颗粒的研究提供指导."/>
<meta name="DC.Description" xml:lang="en" content="Gold nanoparticles have been widely applied to different natural sciences due to its unique optical and electrical properties. It is easy to control the size and shape of gold nanoparticles to adjust the absorption peak of gold nanoparticles and change the optical and electrical properties. When gold nanoparticles are functionalized with DNA, they are endowed with the recognition ability and addressability of DNA, and it further widens the applications of gold nanoparticles in nanoparticle assembly, environmental monitoring, disease diagnosis, drug delivery, and nanoparticle synthesis. First, this review systematically summarized the synthesis of gold nanoparticles with different sizes. Second, it discussed how to rapidly functionalize gold nanoparticles with DNA. Moreover, it studied the factors that affect the density, function, and stability of DNA on gold nanoparticle surface. Finally, it described the applications of gold nanoparticles in detection, nanoparticle assembly, drug delivery, and nanoparticle synthesis. This review would promote understanding of the preparations, properties, and applications of DNA functionalized gold nanoparticles, and would provide guidance for the research of DNA functionalized gold nanoparticles."/>
DNA功能化金纳米及其应用
中国科学 化学
: &&&&DOI: 10.-00161
DNA功能化金纳米及其应用
李久兴, 刘如迪, 张益聪, 祝冰青, 姚秀洁, 林晖, 周雷激, 朱志, 杨朝勇*
固体表面物理化学国家重点实验室; 谱学分析与仪器教育部重点实验室; 厦门大学化学化工学院, 厦门 361005
Application of DNA functionalized gold nanoparticles
Jiuxing Li, Rudi Liu, Yicong Zhang, Bingqing Zhu, Xiujie Yao, Hui Lin, Leiji Zhou, Zhi Zhu, Chaoyong Yang*
State Key Laboratory of Physical Chemistry of Solid S Key Laboratory of Spectrochemical Analysis & Instrumentation, Ministry of E College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
参考文献(291)
点击分布统计
下载分布统计
1. Zanoli LM, D'Agata R, Spoto G. Functionalized gold nanoparticles for ultrasensitive DNA detection. Anal Bioanal Chem, :
2 Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light. Philos Trans R Soc London, : 145-181
3 Mie G. Beitr&ge zur optik tr&ber medien, speziell kolloidaler metall&sungen. Ann Phys, : 377-445
4 Grzelczak M, Jorge PJ, Mulvaney P, Liz-Marzan LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev, 83-1791
5 Eustis S, El-Sayed MA. Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev, 9-217
6 Niemeyer CM. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed, 28-4158
7 Teichroeb JH, Forrest JA, Ngai V, Jones LW. Anomalous thermal denaturing of proteins adsorbed to nanoparticles. Eur Phys J E, -24
8 Aslan K, Lakowicz JR, Geddes CD. Plasmon light scattering in biology and medicine: new sensing approaches, visions and perspectives. Curr Opin Chem Biol, 8-544
9 Aroca RF, Alvarez Puebla RA, Pieczonka N, Sanchez Cortez S, Garcia Ramos JV. Surface-enhanced raman scattering on colloidal nanostructures. Adv Colloid Interface Sci, : 45-61
10 Geddes C, Lakowicz J. Editorial: metal-enhanced fluorescence. J Fluoresc, 1-129
11 Park SJ, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science, :
12 Hill HD, Macfarlane RJ, Senesi AJ, Lee B, Park SY, Mirkin CA. Controlling the lattice parameters of gold nanoparticle fcc crystals with duplex DNA linkers. Nano Lett, 41-2344
13 Cui L, Ke G, Zhang WY, Yang CJ. A universal platform for sensitive and selective colorimetric DNA detection based on Exo III assisted signal amplification. Biosens Bioelectron, 96-2800
14 Pan W, Yang H, Zhang T, Li Y, Li N, Tang B. Dual-targeted nanocarrier based on cell surface receptor and intracellular mrna: an effective strategy for cancer cell imaging and therapy. Anal Chem, 30-6935
15 Han G, You CC, Kim BJ, Turingan RS, Forbes NS, Martin CT, Rotello VM. Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew Chem Int Ed, 65-3169
16 Huang X, El-Sayed MA. Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res, -28
17 Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B, :
18 Kreibig U, Fragstein CV. The limitation of electron mean free path in small silver particles. Zeitschrift f&r Physik, : 307-323
19 Sardar R, Funston AM, Mulvaney P, Murray RW. Gold nanoparticles: past, present, and future. Langmuir, 840-13851
20 Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B, :
21 Lee KS, El-Sayed MA. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B, :
22 Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta, : 181-192
23 Della Pina C, Falletta E, Prati L, Rossi M. Selective oxidation using gold. Chem Soc Rev, 77-2095
24 Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev, 56-2282
25 Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev, 47-1671
26 Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc, -75
27 Frens G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat Phys Sci, : 20-22
28 Jana NR, Gearheart L, Murphy CJ. Evidence for seed-mediated nucleation in the chemical reduction of gold salts to gold nanoparticles. Chem Mater, 13-2322
29 Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc, :
30 Isaac OJ, Romero FM, Bast&s NG, Puntes V. Small gold nanoparticles synthesized with sodium citrate and heavy water: insights into the reaction mechanism. J Phys Chem C, :
31 Biggs S, Mulvaney P, Zukoski CF, Grieser F. Study of anion adsorption at the gold-aqueous solution interface by atomic force microscopy. J Am Chem Soc, :
32 Gao C, Vuong J, Zhang Q, Liu Y, Yin Y. One-step seeded growth of au nanoparticles with widely tunable sizes. Nanoscale, 75-2878
33 Brown KR, Walter DG, Natan MJ. Seeding of colloidal au nanoparticle solutions. 2. Improved control of particle size and shape. Chem Mater, 6-313
34 Jana NR, Gearheart L, Murphy CJ. Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir, 82-6786
35 Jessica RF, Jorge PJ, Garc&a de Abajo FJ, Liz-Marz&n LM. Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. Langmuir, 07-7010
36 Sergio GG, Hubert F, Testard F, Andr&s GM, Grillo I, Liz-Marz&n LM, Spalla O. Surfactant (bi)layers on gold nanorods. Langmuir, 53-1459
37 Perrault SD, Chan WCW. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm. J Am Chem Soc, :
38 Ziegler C, Eychm&ller A. Seeded growth synthesis of uniform gold nanoparticles with diameters of 15-300 nm. J Phys Chem C, :
39 Bast&s NG, Comenge J, Puntes V. Kinetically controlled seeded growth synthesis of citrate-stabilized gold nanoparticles of up to 200 nm: size focusing versus ostwald ripening. Langmuir, 098-11105
40 Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature, : 549-552
41 Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature, : 607-609
42 Maxwell DJ, Taylor JR, Nie S. Self-assembled nanoparticle probes for recognition and detection of biomolecules. J Am Chem Soc, :
43 Yan J, Hu C, Wang P, Zhao B, Ouyang X, Zhou J, Liu R, He D, Fan C, Song S. Growth and origami folding of DNA on nanoparticles for high-efficiency molecular transport in cellular imaging and drug delivery. Angew Chem Int Ed, 31-2435
44 Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, Nam JM. Highly uniform and reproducible surface-enhanced raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol, 2-460
45 Shen J, Xu L, Wang C, Pei H, Tai R, Song S, Huang Q, Fan C, Chen G. Dynamic and quantitative control of the DNA-mediated growth of gold plasmonic nanostructures. Angew Chem Int Ed, 38-8342
46 Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL. DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc, :
47 Zhang X, Servos MR, Liu J. Instantaneous and quantitative functionalization of gold nanoparticles with thiolated DNA using a pH-assisted and surfactant-free route. J Am Chem Soc, :
48 Demers LM, Mirkin CA, Mucic RC, Reynolds RA, Letsinger RL, Elghanian R, Viswanadham G. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal Chem, 35-5541
49 Dougan JA, Karlsson C, Smith WE, Graham D. Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Res, 68-3675
50 Demers LM, Oestblom M, Zhang H, Jang NH, Liedberg B, Mirkin CA. Thermal desorption behavior and binding properties of DNA bases and nucleosides on gold. J Am Chem Soc, :
51 Sandstroem P, Boncheva M, Kerman B. Nonspecific and thiol-specific binding of DNA to gold nanoparticles. Langmuir, 37-7543
52 Cardenas M, Barauskas J, Schillen K, Brennan JL, Brust M, Nylander T. Thiol-specific and nonspecific interactions between DNA and gold nanoparticles. Langmuir, 94-3299
53 Brown KA, Park S, Kimberly HS. Nucleotide-surface interactions in DNA-modified Au-nanoparticle conjugates: sequence effects on reactivity and hybridization. J Phys Chem C, :
54 Zhang X, Liu B, Dave N, Servos MR, Liu J. Instantaneous attachment of an ultrahigh density of nonthiolated DNA to gold nanoparticles and its applications. Langmuir, 053-17060
55 Storhoff JJ, Elghanian R, Mirkin CA, Letsinger RL. Sequence-dependent stability of DNA-modified gold nanoparticles. Langmuir, 66-6670
56 Gourishankar A, Shukla S, Ganesh KN, Sastry M. Isothermal titration calorimetry studies on the binding of DNA bases and PNA base monomers to gold nanoparticles. J Am Chem Soc, :
57 Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci USA, :
58 Zhang X, Servos MR, Liu J. Surface science of DNA adsorption onto citrate-capped gold nanoparticles. Langmuir, 96-3902
59 Li H, Rothberg LJ. Label-free colorimetric detection of specific sequences in genomic DNA amplified by the polymerase chain reaction. J Am Chem Soc, :
60 Nelson EM, Rothberg LJ. Kinetics and mechanism of single-stranded DNA adsorption onto citrate-stabilized gold nanoparticles in colloidal solution. Langmuir, 70-1777
61 Sowerby SJ, Cohn CA, Heckl WM, Holm NG. Differential adsorption of nucleic acid bases: relevance to the origin of life. Proc Natl Acad Sci USA, 0-822
62 Liu J. Adsorption of DNA onto gold nanoparticles and graphene oxide: surface science and applications. PCCP, 485-10496
63 Jang NH. The coordination chemistry of DNA nucleosides on gold nanoparticles as a probe by SERS. Bull Korean Chem Soc, 90-1800
64 Hurst SJ, Lytton Jean AKR, Mirkin CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem, 13-8318
65 Liu J, Lu Y. Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc, 6-252
66 Zhang J, Song S, Wang L, Pan D, Fan C. A gold nanoparticle-based chronocoulometric DNA sensor for amplified detection of DNA. Nat Protoc, 88-2895
67 Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. What controls the melting properties of DNA-linked gold nanoparticle assemblies J Am Chem Soc, :
68 Liu J, Lu Y. Accelerated color change of gold nanoparticles assembled by dnazymes for simple and fast colorimetric Pb2+ detection. J Am Chem Soc, :
69 Zu Y, Gao Z. Facile and controllable loading of single-stranded DNA on gold nanoparticles. Anal Chem, 23-8528
70 Xu S, Yuan H, Xu A, Wang J, Wu L. Rapid synthesis of stable and functional conjugates of DNA/gold nanoparticles mediated by Tween 80. Langmuir, 629-13634
71 Bhatt N, Huang PJJ, Dave N, Liu J. Dissociation and degradation of thiol-modified DNA on gold nanoparticles in aqueous and organic solvents. Langmuir, 32-6137
72 Lim DK, Kim IJ, Nam JM. DNA-embedded Au/Ag core-shell nanoparticles. Chem Commun, -5314
73 Zhang X, Huang PJJ, Servos MR, Liu J. Effects of polyethylene glycol on DNA adsorption and hybridization on gold nanoparticles and graphene oxide. Langmuir, 330-14337
74 Zhang X, Gouriye T, Goeken K, Servos MR, Gill R, Liu J. Toward fast and quantitative modification of large gold nanoparticles by thiolated DNA: scaling of nanoscale forces, kinetics, and the need for thiol reduction. J Phys Chem C, :
75 Li J, Zhu B, Yao X, Zhang Y, Zhu Z, Tu S, Jia S, Liu R, Kang H, Yang CJ. Synergetic approach for simple and rapid conjugation of gold nanoparticles with oligonucleotides. ACS Appl Mater Interf, 800-16807
76 Hill HD, Millstone JE, Banholzer MJ, Mirkin CA. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano, 8-424
77 Zanchet D, Micheel CM, Parak WJ, Gerion D, Alivisatos AP. Electrophoretic isolation of discrete au nanocrystal/DNA conjugates. Nano Lett, -35
78 Claridge SA, Liang HW, Basu SR, Fr&chet JMJ, Alivisatos AP. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett, 02-1206
79 Borovok N, Gillon E, Kotlyar A. Synthesis and assembly of conjugates bearing specific numbers of DNA strands per gold nanoparticle. Bioconjugate Chem, 6-922
80 Zhang T, Dong Y, Sun Y, Chen P, Yang Y, Zhou C, Xu L, Yang Z, Liu D. DNA bimodified gold nanoparticles. Langmuir, 66-1970
81 Wen Y, McLaughlin CK, Lo PK, Yang H, Sleiman HF. Stable gold nanoparticle conjugation to internal DNA positions: facile generation of discrete gold nanoparticle-DNA assemblies. Bioconjugate Chem, 13-1416
82 Kim EY, Stanton J, Vega RA, Kunstman KJ, Mirkin CA, Wolinsky SM. A real-time PCR-based method for determining the surface coverage of thiol-capped oligonucleotides bound onto gold nanoparticles. Nucleic Acids Res, -60
83 Falabella JB, Cho TJ, Ripple DC, Hackley VA, Tarlov MJ. Characterization of gold nanoparticles modified with single-stranded DNA using analytical ultracentrifugation and dynamic light scattering. Langmuir, 740-12747
84 Liu YC, Li YJ, Huang CC. Information derived from cluster ions from DNA-modified gold nanoparticles under laser desorption/ionization: analysis of coverage, structure, and single-nucleotide polymorphism. Anal Chem, 21-1028
85 Paliwoda RE, Li F, Reid MS, Lin Y, Le XC. Sequential strand displacement beacon for detection of DNA coverage on functionalized gold nanoparticles. Anal Chem, 38-6143
86 Poon L, Zandberg W, Hsiao D, Erno Z, Sen D, Gates BD, Branda NR. Photothermal release of single-stranded DNA from the surface of gold nanoparticles through controlled denaturating and Au-S bond breaking. ACS Nano, 95-6403
87 Lytton JAKR, Mirkin CA. A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes. J Am Chem Soc, :
88 Chen C, Wang W, Ge J, Zhao XS. Kinetics and thermodynamics of DNA hybridization on gold nanoparticles. Nucleic Acids Res, 56-3765
89 Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces. J Am Chem Soc, :
90 Kiang CH. Phase transition of DNA-linked gold nanoparticles. Phys A, : 164-169
91 Akamatsu K, Kimura M, Shibata Y, Nakano S, Miyoshi D, Nawafune H, Sugimoto N. A DNA duplex with extremely enhanced thermal stability based on controlled immobilization on gold nanoparticles. Nano Lett, 1-495
92 Zaki A, Dave N, Liu J. Amplifying the macromolecular crowding effect using nanoparticles. J Am Chem Soc, : 35-38
93 Xie X, Xu W, Liu X. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification. Acc Chem Res, 11-1520
94 Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science, :
95 Fong KE, Yung LYL. Head-to-tail: hybridization and single-mismatch discrimination in metallic nanoparticle-DNA assembly. RSC Adv, 76-6084
96 Weigum SE, Castellanos GA, White AC Jr, Richards KR. Amplification-free detection of cryptosporidium parvum nucleic acids with the use of DNA/RNA-directed gold nanoparticle assemblies. J Parasitol, 3-926
97 Han MS, Lytton Jean AKR, Mirkin CA. A gold nanoparticle based approach for screening triplex DNA binders. J Am Chem Soc, :
98 Seela F, Budow S. pH-dependent assembly of DNA-gold nanoparticles based on the i-motif. Nucleos Nucleot Nucleic Acids, 5-759
99 Song G, Chen C, Qu X, Miyoshi D, Ren J, Sugimoto N. Small-molecule-directed assembly: a gold nanoparticle-based strategy for screening of homo-adenine DNA duplex binders. Adv Mater, 6-710
100 Xue X, Wang F, Liu X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. J Am Chem Soc, :
101 Feng DQ, Liu GL, Zheng WJ, Liu J, Chen TF, Li D. A highly selective and sensitive on-off sensor for silver ions and cysteine by light scattering technique of DNA-functionalized gold nanoparticles. Chem Commun, 57-8559
102 Ma Y, Guo Y, Li J, Guan J, Xu L, Yang W. Poly(l-lysine)-induced aggregation of single-strand oligo-DNA-modified gold nanoparticles. Chem-Eur J, 135-13140
103 Zhang JQ, Wang YS, He Y, Jiang T, Yang HM, Tan X, Kang RH, Yuan YK, Shi LF. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer. Anal Biochem, : 212-217
104 Miao XM, Xiong C, Wang WW, Ling LS, Shuai XT. Dynamic-light-scattering-based sequence-specific recognition of double-stranded DNA with oligonucleotide-functionalized gold nanoparticles. Chem-Eur J, 230-11236
105 Feng DQ, Liu G, Zheng W, Chen T, Li D. A new light-scattering sensor for screening G-quadruplex stabilizers based on DNA-folding-mediated assembly of gold nanoparticles. J Mater Chem B, 57-3063
106 McKenzie F, Faulds K, Graham D. Sequence-specific DNA detection using high-affinity lna-functionalized gold nanoparticles. Small, 66-1868
107 Zu Y, Ting AL, Gao Z. Visualizing low-level point mutations: enzyme-like selectivity offered by nanoparticle probes. Small, 6-310
108 Zhang Y, Hu J, Zhang CY. Sensitive detection of transcription factors by isothermal exponential amplification-based colorimetric assay. Anal Chem, 44-9549
109 Shen W, Deng H, Gao Z. Gold nanoparticle-enabled real-time ligation chain reaction for ultrasensitive detection of DNA. J Am Chem Soc, :
110 Wong JKF, Yip SP, Lee TMH. Silica-modified oligonucleotide-gold nanoparticle conjugate enables closed-tube colorimetric polymerase chain reaction. Small, 4-219
111 Ma C, Wang W, Li Z, Cao L, Wang Q. Simple colorimetric DNA detection based on hairpin assembly reaction and target-catalytic circuits for signal amplification. Anal Biochem, : 99-102
112 Xu W, Xie X, Li D, Yang Z, Li T, Liu X. Ultrasensitive colorimetric DNA detection using a combination of rolling circle amplification and nicking endonuclease-assisted nanoparticle amplification (NEANA). Small, 46-1850
113 Zhao W, Chiuman W, Brook MA, Li Y. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem, 7-731
114 Zhao W, Lam JCF, Chiuman W, Brook MA, Li Y. Enzymatic cleavage of nucleic acids on gold nanoparticles: a generic platform for facile colorimetric biosensors. Small, 0-816
115 Ogawa A. Rna aptazyme-tethered large gold nanoparticles for on-the-spot sensing of the aptazyme ligand. Bioorg Med Chem Lett, 5-159
116 Gao ZF, Song WW, Luo HQ, Li NB. Detection of mercury ions (II) based on non-cross-linking aggregation of double-stranded DNA modified gold nanoparticles by resonance rayleigh scattering method. Biosens Bioelectron, 0-365
117 Song J, Li Z, Cheng Y, Liu C. Self-aggregation of oligonucleotide-functionalized gold nanoparticles and its applications for highly sensitive detection of DNA. Chem Commun, 48-5550
118 Liu J, Lu Y. A colorimetric lead biosensor using dnazyme-directed assembly of gold nanoparticles. J Am Chem Soc, :
119 Liu J, Lu Y. Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor. Anal Chem, 27-1632
120 Liu J, Lu Y. Design of asymmetric dnazymes for dynamic control of nanoparticle aggregation states in response to chemical stimuli. Org Biomol Chem, 35-3441
121 Liu J, Lu Y. Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc, :
122 Liu J, Lu Y. Colorimetric biosensors based on dnazyme-assembled gold nanoparticles. J Fluoresc, 3-354
123 Liu J, Lu Y. Non-base pairing DNA provides a new dimension for controlling aptamer-linked nanoparticles and sensors. J Am Chem Soc, :
124 Xu X, Han MS, Mirkin CA. A gold-nanoparticle-based real-time colorimetric screening method for endonuclease activity and inhibition. Angew Chem Int Ed, 68-3470
125 Lee JS, Ulmann PA, Han MS, Mirkin CA. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett, 9-533
126 Ou LJ, Jin PY, Chu X, Jiang JH, Yu RQ. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Anal Chem, 15-6024
127 Liu ZF, Ge J, Zhao XS. Quantitative detection of adenosine in urine using silver enhancement of aptamer-gold nanoparticle aggregation and progressive dilution. Chem Commun, 56-4958
128 Chavez JL, Lyon W, Kelley Loughnane N, Stone MO. Theophylline detection using an aptamer and DNA-gold nanoparticle conjugates. Biosens Bioelectron, -28
129 Zhou Z, Wei W, Zhang Y, Liu S. DNA-responsive disassembly of aunp aggregates: influence of nonbase-paired regions and colorimetric DNA detection by exonuclease iii aided amplification. J Mater Chem B, 51-2858
130 Sato K, Hosokawa K, Maeda M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J Am Chem Soc, :
131 Zhao W, Chiuman W, Lam JCF, McManus SA, Chen W, Cui Y, Pelton R, Brook MA, Li Y. DNA aptamer folding on gold nanoparticles: from colloid chemistry to biosensors. J Am Chem Soc, :
132 Chen C, Zhao C, Yang X, Ren J, Qu X. Enzymatic manipulation of DNA-modified gold nanoparticles for screening G-quadruplex ligands and evaluating selectivities. Adv Mater, 9-393
133 Wu ZS, Lu H, Liu X, Hu R, Zhou H, Shen G, Yu RQ. Inhibitory effect of target binding on hairpin aptamer sticky-end pairing-induced gold nanoparticle assembly for light-up colorimetric protein assay. Anal Chem, 90-3898
134 Wu J, Li L, Zhu D, He P, Fang Y, Cheng G. Colorimetric assay for mercury (II) based on mercury-specific deoxyribonucleic acid-functionalized gold nanoparticles. Anal Chim Acta, : 115-119
135 Liu G, Zhang Q, Qian Y, Yu S, Li F. Highly specific sensing of silver based on aggregation of G-quadruplex-capped gold nanoparticles. Anal Methods, 8-652
136 Wu Z, Wu ZK, Tang H, Tang LJ, Jiang JH. Activity-based DNA-gold nanoparticle probe as colorimetric biosensor for DNA methyltransferase/glycosylase assay. Anal Chem, 76-4383
137 Yortyot SN, Jaroenram W, Sriurairatana S, Suebsing R, Kiatpathomchai W. Visual detection of white spot syndrome virus using DNA-functionalized gold nanoparticles as probes combined with loop-mediated isothermal amplification. Mol Cell Probes, -79
138 Mao X, Ma Y, Zhang A, Zhang L, Zeng L, Liu G. Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip. Anal Chem, 60-1668
139 Li Z, Wang Y, Wang J, Tang Z, Pounds JG, Lin Y. Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal Chem, 08-7014
140 Liao JY, Li H. Lateral flow immunodipstick for visual detection of aflatoxin b1 in food using immuno-nanoparticles composed of a silver core and a gold shell. Microchim. Acta, : 289-295
141 Glynou K, Ioannou PC, Christopoulos TK, Syriopoulou V. Oligonucleotide-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for DNA analysis by hybridization. Anal Chem, 55-4160
142 Toubanaki DK, Christopoulos TK, Ioannou PC, Gravanis A. Dry-reagent disposable biosensor for visual genotyping of single nucleotide polymorphisms by oligonucleotide ligation reaction: application to pharmacogenetic analysis. Hum Mutat, 71-1078
143 Xu H, Mao X, Zeng Q, Wang S, Kawde AN, Liu G. Aptamer-functionalized gold nanoparticles as probes in a dry-reagent strip biosensor for protein analysis. Anal Chem, 9-675
144 Fang Z, Huang J, Lie P, Xiao Z, Ouyang C, Wu Q, Wu Y, Liu G, Zeng L. Lateral flow nucleic acid biosensor for Cu2+ detection in aqueous solution with high sensitivity and selectivity. Chem Commun, 43-9045
145 He Y, Zhang X, Zhang S, Kris MKL, Man FC, Kawde AN, Liu G. Visual detection of single-base mismatches in DNA using hairpin oligonucleotide with double-target DNA binding sequences and gold nanoparticles. Biosens Bioelectron, -43
146 Yang F, Duan J, Li M, Wang Z, Guo Z. Visual and on-site detection of mercury(II) ions on lateral flow strips using DNA-functionalized gold nanoparticles. Anal Sci, 3-333
147 He Y, Zeng K, Gurung AS, Baloda M, Xu H, Zhang X, Liu G. Visual detection of single-nucleotide polymorphism with hairpin oligonucleotide-functionalized gold nanoparticles. Anal Chem, 69-7177
148 He Y, Zhang X, Zhang S, Baloda M, Gurung AS, Zeng K, Liu G. Visual detection of Hg2+ in aqueous solution using gold nanoparticles and thymine-rich hairpin DNA probes. Biosens Bioelectron, 64-4470
149 Lie P, Liu J, Fang Z, Dun B, Zeng L. A lateral flow biosensor for detection of nucleic acids with high sensitivity and selectivity. Chem Commun, 6-238
150 Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science, :
151 Nam JM, Park SJ, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc, :
152 Lee JS, Mirkin CA. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem, 05-6808
153 Lee JH, Domaille DW, Cha JN. Amplified protein detection and identification through DNA-conjugated m13 bacteriophage. ACS Nano, 21-5626
154 Cho H, Jung J, Chung BH. Scanometric analysis of DNA microarrays using DNA intercalator-conjugated gold nanoparticles. Chem Commun, 01-7603
155 Lytton Jean AKR, Han MS, Mirkin CA. Microarray detection of duplex and triplex DNA binders with DNA-modified gold nanoparticles. Anal Chem, 37-6041
156 Baeissa A, Moghimi N, Liu J. Hydrogel porosity controlling DNA-directed immobilization of gold nanoparticles revealed by DNA melting and scanning helium ion microscopy. RSC Adv, 81-2987
157 Lin L, Liu Y, Tang L, Li J. Electrochemical DNA sensor by the assembly of graphene and DNA-conjugated gold nanoparticles with silver enhancement strategy. Analyst, :
158 Nam JM, Thaxton CS, Mirkin CA. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science, :
159 Zheng G, Daniel WL, Mirkin CA. A new approach to amplified telomerase detection with polyvalent oligonucleotide nanoparticle conjugates. J Am Chem Soc, :
160 Stoeva SI, Lee JS, Thaxton CS, Mirkin CA. Multiplexed DNA detection with biobarcoded nanoparticle probes. Angew Chem Int Ed, 03-3306
161 Jayagopal A, Halfpenny KC, Perez JW, Wright DW. Hairpin DNA-functionalized gold colloids for the imaging of mrna in live cells. J Am Chem Soc, :
162 Degliangeli F, Kshirsagar P, Brunetti V, Pompa PP, Fiammengo R. Absolute and direct microrna quantification using DNA-gold nanoparticle probes. J Am Chem Soc, :
163 Leng X, Huang D, Niu C, Wang X, Zeng G, Niu Q. Time-gated fluorescence sensor for silver ions using mn:Cds/Zns quantum dots/DNA/gold nanoparticle complexes. Anal Methods, 65-6270
164 Tang B, Zhang N, Chen Z, Xu K, Zhuo L, Liguo A, Yang G. Probing hydroxyl radicals and their imaging in living cells by use of FAM-DNA-Au nanoparticles. Chem-Eur J, 2-528
165 Qiao Y, Deng J, Jin Y, Chen G, Wang L. Identifying G-quadruplex-binding ligands using DNA-functionalized gold nanoparticles. Analyst, :
166 Xiao Y, Dane KY, Uzawa T, Csordas A, Qian J, Soh HT, Daugherty PS, Lagally ET, Heeger AJ, Plaxco KW. Detection of telomerase activity in high concentration of cell lysates using primer-modified gold nanoparticles. J Am Chem Soc, :
167 Yu LH, Chen YF. Concentration-dependent thermophoretic accumulation for the detection of DNA using DNA-functionalized nanoparticles. Anal Chem, 45-2851
168 Ebrahimi S, Akhlaghi Y, Kompany Zareh M, Rinnan A. Nucleic acid based fluorescent nanothermometers. ACS Nano, 372-10382
169 Zhang C, Wu L, Yang J, Liu S, Xu J. A molecular logical switching beacon controlled by thiolated DNA signals. Chem Commun, 308-11310
170 Song S, Liang Z, Zhang J, Wang L, Li G, Fan C. Gold-nanoparticle-based multicolor nanobeacons for sequence-specific DNA analysis. Angew Chem Int Ed, 70-8674
171 Kuang H, Zhao S, Chen W, Ma W, Yong Q, Xu L, Wang L, Xu C. Rapid DNA detection by interface pcr on nanoparticles. Biosens Bioelectron, 95-2499
172 Huang Y, Zhao S, Chen ZF, Liu YC, Liang H. Ultrasensitive endonuclease activity and inhibition detection using gold nanoparticle-enhanced fluorescence polarization. Chem Commun, 63-4765
173 Seo SH, Lee YR, Ho Jeon J, Hwang YR, Park PG, Ahn DR, Han KC, Rhie GE, Hong KJ. Highly sensitive detection of a bio-threat pathogen by gold nanoparticle-based oligonucleotide-linked immunosorbent assay. Biosens Bioelectron, -73
174 Kerman K, Saito M, Morita Y, Takamura Y, Ozsoz M, Tamiya E. Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal Chem, 77-1884
175 Zhu Z, Su Y, Li J, Li D, Zhang J, Song S, Zhao Y, Li G, Fan C. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification. Anal Chem, 60-7666
176 Shen L, Chen Z, Li Y, He S, Xie S, Xu X, Liang Z, Meng X, Li Q, Zhu Z, Li M, Le XC, Shao Y. Electrochemical dnazyme sensor for lead based on amplification of DNA-Au bio-bar codes. Anal Chem, 23-6328
177 Zhang S, Xia J, Li X. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified au nanoparticles. Anal Chem, 82-8388
178 Liang J, Chen Z, Guo L, Li L. Electrochemical sensing of l-histidine based on structure-switching dnazymes and gold nanoparticle-graphene nanosheet composites. Chem Commun, 76-5478
179 Jing X, Cao X, Wang L, Lan T, Li Y, Xie G. DNA-aunps based signal amplification for highly sensitive detection of DNA methylation, methyltransferase activity and inhibitor screening. Biosens Bioelectron, -47
180 Zhou J, Lai W, Zhuang J, Tang J, Tang D. Nanogold-functionalized dnazyme concatamers with redox-active intercalators for quadruple signal amplification of electrochemical immunoassay. ACS Appl Mater Interfaces, 73-2781
181 Wang WJ, Li JJ, Rui K, Gai PP, Zhang JR, Zhu JJ. Sensitive electrochemical detection of telomerase activity using spherical nucleic acids gold nanoparticles triggered mimic-hybridization chain reaction enzyme-free dual signal amplification. Anal Chem, 19-3026
182 Cui HF, Xu TB, Sun YL, Zhou AW, Cui YH, Liu W, Luong JHT. Hairpin DNA as a biobarcode modified on gold nanoparticles for electrochemical DNA detection. Anal Chem, 58-1365
183 Nam EJ, Kim EJ, Wark AW, Rho S, Kim H, Lee HJ. Highly sensitive electrochemical detection of proteins using aptamer-coated gold nanoparticles and surface enzyme reactions. Analyst, :
184 Han S, Lin J, Satjapipat M, Baca AJ, Zhou F. A three-dimensional heterogeneous DNA sensing surface formed by attaching oligodeoxynucleotide-capped gold nanoparticles onto a gold-coated quartz crystal. Chem Commun, 0
185 Sendroiu IE, Gifford LK, Luptak A, Corn RM. Ultrasensitive DNA microarray biosensing via in situ RNA transcription-based amplification and nanoparticle-enhanced spr imaging. J Am Chem Soc, :
186 Picciolini S, Mehn D, Morasso C, Vanna R, Bedoni M, Pellacani P, Marchesini G, Valsesia A, Prosperi D, Tresoldi C, Ciceri F, Gramatica F. Polymer nanopillar-gold arrays as surface-enhanced raman spectroscopy substrate for the simultaneous detection of multiple genes. ACS Nano, 496-10506
187 Demers LM, Park SJ, Taton TA, Li Z, Mirkin CA. Orthogonal assembly of nanoparticle building blocks on dip-pen nanolithographically generated templates of DNA. Angew Chem Int Ed, 71-3
188 Chiu WJ, Ling TK, Chiang HP, Lin HJ, Huang CC. Monitoring cluster ions derived from aptamer-modified gold nanofilms under laser desorption/ionization for the detection of circulating tumor cells. ACS Appl Mater Interfaces, -8630
189 Zhou WH, Zhu CL, Lu CH, Guo X, Chen F, Yang HH, Wang X. Amplified detection of protein cancer biomarkers using dnazyme functionalized nanoprobes. Chem Commun, -6847
190 Graham D, Thompson DG, Smith WE, Faulds K. Control of enhanced raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nanotechnol, 8-551
191 Dai Q, Liu X, Coutts J, Austin L, Huo Q. A one-step highly sensitive method for DNA detection using dynamic light scattering. J Am Chem Soc, :
192 Zhang C, Ma J, Yang J, Liu S, Xu J. Binding assistance triggering attachments of hairpin DNA onto gold nanoparticles. Anal Chem, 973-11978
193 Guo L, Ferhan AR, Chen H, Li C, Chen G, Hong S, Kim DH. Distance-mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of more than 60 nm. Small, 4-240
194 Lee K, Cui Y, Lee LP, Irudayaraj J. Quantitative imaging of single mRNA splice variants in living cells. Nat Nanotechnol, 4-480
195 Du BA, Li ZP, Liu CH. One-step homogeneous detection of DNA hybridization with gold nanoparticle probes by using a linear light-scattering technique. Angew Chem Int Ed, 22-8025
196 Sato Y, Sato K, Hosokawa K, Maeda M. Surface plasmon resonance imaging on a microchip for detection of DNA-modified gold nanoparticles deposited onto the surface in a non-cross-linking configuration. Anal Biochem, : 125-131
197 Xie C, Xu F, Huang X, Dong C, Ren J. Single gold nanoparticles counter: an ultrasensitive detection platform for one-step homogeneous immunoassays and DNA hybridization assays. J Am Chem Soc, :
198 Bai X, Shao C, Han X, Li Y, Guan Y, Deng Z. Visual detection of sub-femtomole DNA by a gold nanoparticle seeded homogeneous reduction assay: toward a generalized sensitivity-enhancing strategy. Biosens Bioelectron, 84-1988
199 Han G, Xing Z, Dong Y, Zhang S, Zhang X. One-step homogeneous DNA assay with single-nanoparticle detection. Angew Chem Int Ed, 62-3465
200 Park SJ, Lazarides AA, Mirkin CA, Brazis PW, Kannewurf CR, Letsinger RL. The electrical properties of gold nanoparticle assemblies linked by DNA. Angew Chem Int Ed, 45-3848
201 Hurst SJ, Hill HD, Mirkin CA. &Three-dimensional hybridization& with polyvalent DNA-gold nanoparticle conjugates. J Am Chem Soc, :
202 Yan Y, Chen JIL, Ginger DS. Photoswitchable oligonucleotide-modified gold nanoparticles: controlling hybridization stringency with photon dose. Nano Lett, 30-2536
203 Zhang K, Zhu X, Jia F, Auyeung E, Mirkin CA. Temperature-activated nucleic acid nanostructures. J Am Chem Soc, :
204 Wang W, Liu H, Liu D, Xu Y, Yang Y, Zhou D. Use of the interparticle i-motif for the controlled assembly of gold nanoparticles. Langmuir, 956-11959
205 Maye MM, Nykypanchuk D, van der Lelie D, Gang O. A simple method for kinetic control of DNA-induced nanoparticle assembly. J Am Chem Soc, :
206 Lubitz I, Kotlyar A. G4-DNA-coated gold nanoparticles: synthesis and assembly. Bioconjugate Chem, 43-2047
207 Kanaras AG, Wang Z, Bates AD, Cosstick R, Brust M. Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of DNA/gold systems. Angew Chem Int Ed, 1-194
208 Bates AD, Callen BP, Cooper JM, Cosstick R, Glidle A, Jaeger L, Pearson JL, Maria PP, Xu C, Cumming DRS. Construction and characterization of a gold nanoparticle wire assembled using Mg2+-dependent RNA-RNA interactions. Nano Lett, 5-448
209 Zhao Y, Xu L, Kuang H, Wang L, Xu C. Asymmetric and symmetric pcr of gold nanoparticles: a pathway to scaled-up self-assembly with tunable chirality. J Mater Chem, 74-5580
210 Krpetic Z, Singh I, Su W, Guerrini L, Faulds K, Burley GA, Graham D. Directed assembly of DNA-functionalized gold nanoparticles using pyrrole-imidazole polyamides. J Am Chem Soc, :
211 Amelie HJ, Kirkwood R, El-Sagheer AH, Brown T, Kanaras AG. Copper-free click chemistry as an emerging tool for the programmed ligation of DNA-functionalised gold nanoparticles. Nanoscale, 09-7212
212 Campolongo MJ, Tan SJ, Smilgies DM, Zhao M, Chen Y, Xhangolli I, Cheng W, Luo D. Crystalline gibbs monolayers of DNA-capped nanoparticles at the air-liquid interface. ACS Nano, 78-7985
213 Lee JS, Stoeva SI, Mirkin CA. DNA-induced size-selective separation of mixtures of gold nanoparticles. J Am Chem Soc, :
214 Xiang Y, Wang Z, Xing H, Lu Y. Expanding dnazyme functionality through enzyme cascades with applications in single nucleotide repair and tunable DNA-directed assembly of nanomaterials. Chem Sci, 8-404
215 Li K, Wang K, Qin W, Deng S, Li D, Shi J, Huang Q, Fan C. DNA-directed assembly of gold nanohalo for quantitative plasmonic imaging of single-particle catalysis. J Am Chem Soc, :
216 Kim AJ, Biancaniello PL, Crocker JC. Engineering DNA-mediated colloidal crystallization. Langmuir, 91-2001
217 Park SY, Lytton JAKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature, : 553-556
218 Radha B, Senesi AJ, O'Brien MN, Wang MX, Auyeung E, Lee B, Mirkin CA. Reconstitutable nanoparticle superlattices. Nano Lett, 62-2167
219 Sun D, Gang O. Binary heterogeneous superlattices assembled from quantum dots and gold nanoparticles with DNA. J Am Chem Soc, :
220 Auyeung E, Cutler JI, MacFarlane RJ, Jones MR, Wu J, Liu G, Zhang K, Osberg KD, Mirkin CA. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach. Nat Nanotechnol, -28
221 MacFarlane RJ, Jones MR, Lee B, Auyeung E, Mirkin CA. Topotactic interconversion of nanoparticle superlattices. Science, :
222 Brodin JD, Auyeung E, Mirkin CA. DNA-mediated engineering of multicomponent enzyme crystals. Proc Natl Acad Sci USA, :
223 Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Schultz PG. Organization of &nanocrystal molecules& using DNA. Nature, : 609-611
224 Mastroianni AJ, Claridge SA, Alivisatos AP. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J Am Chem Soc, :
225 Aldaye FA, Sleiman HF. Dynamic DNA templates for discrete gold nanoparticle assemblies: control of geometry, modularity, write/erase and structural switching. J Am Chem Soc, :
226 Choi JY, Kim YT, Seo TS. Polymerase chain reaction-free variable-number tandem repeat typing using gold nanoparticle-DNA monoconjugates. ACS Nano, 27-2633
227 Sandstroem P, Aakerman B. Electrophoretic properties of DNA-modified colloidal gold nanoparticles. Langmuir, 82-4186
228 Piantanida L, Naumenko D, Lazzarino M. Highly efficient gold nanoparticle dimer formation via DNA hybridization. RSC Adv, 281-15287
229 Li Y, Zheng Y, Gong M, Deng Z. Pt nanoparticles decorated with a discrete number of DNA molecules for programmable assembly of Au-Pt bimetallic superstructures. Chem Commun, 27-3729
230 Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc, :
231 Spain E, Miner B, Keyes TE, Forster RJ. Regio selective functionalisation of gold nanoparticles with DNA. Chem Commun, 8-840
232 Tan LH, Xing H, Chen H, Lu Y. Facile and efficient preparation of anisotropic DNA-functionalized gold nanoparticles and their regioselective assembly. J Am Chem Soc, :
233 Wang C, Du Y, Wu Q, Xuan S, Zhou J, Song J, Shao F, Duan H. Stimuli-responsive plasmonic core-satellite assemblies: i-motif DNA linker enabled intracellular ph sensing. Chem Commun, 39-5741
234 Sharma J, Chhabra R, Liu Y, Ke Y, Yan H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew Chem Int Ed, 0-735
235 Le JD, Pinto Y, Seeman NC, Karin MF, Taton TA, Kiehl RA. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett, 43-2347
236 Deng Z, Tian Y, Lee SH, Ribbe AE, Mao C. DNA-encoded self-assembly of gold nanoparticles into one-dimensional arrays. Angew Chem, Int Ed, 82-3585
237 Zhao W, Gao Y, Kandadai SA, Brook MA, Li Y. DNA polymerization on gold nanoparticles through rolling circle amplification: towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew Chem Int Ed, 09-2413
238 Lee JH, Wernette DP, Yigit MV, Liu J, Wang Z, Lu Y. Site-specific control of distances between gold nanoparticles using phosphorothioate anchors on DNA and a short bifunctional molecular fastener. Angew Chem Int Ed, 06-9010
239 Klein WP, Schmidt CN, Rapp B, Takabayashi S, Knowlton WB, Lee J, Yurke B, Hughes WL, Graugnard E, Kuang W. Multiscaffold DNA origami nanoparticle waveguides. Nano Lett, 50-3856
240 Lau KL, Hamblin GD, Sleiman HF. Gold nanoparticle 3d-DNA building blocks: high purity preparation and use for modular access to nanoparticle assemblies. Small, 0-666
241 Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res, 06-3415
242 Maeda Y, Tabata H, Kawai T. Two-dimensional assembly of gold nanoparticles with a DNA network template. Appl Phys Lett, 81-1183
243 Mudalige TK, Gang O, Sherman WB. A zwitterion-DNA coating stabilizes nanoparticles against Mg2+ driven aggregation enabling attachment to DNA nanoassemblies. Nanoscale, 55-2858
244 Sharma J, Chhabra R, Cheng A, Brownell J, Liu Y, Yan H. Control of self-assembly of DNA tubules through integration of gold nanoparticles. Science, : 112-116
245 Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature, : 297-302
246 Pilo PM, Goldberg S, Samano E, LaBean TH, Finkelstein G. Connecting the nanodots: programmable nanofabrication of fused metal shapes on DNA templates. Nano Lett, 89-3492
247 Hung AM, Micheel CM, Bozano LD, Osterbur LW, Wallraff GM, Cha JN. Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nat Nanotechnol, 1-126
248 Dai G, Lu X, Chen Z, Meng C, Ni W, Wang Q. DNA origami-directed, discrete three-dimensional plasmonic tetrahedron nanoarchitectures with tailored optical chirality. ACS Appl Mater Interfaces, 88-5392
249 Wang R, Nuckolls C, Wind SJ. Assembly of heterogeneous functional nanomaterials on DNA origami scaffolds. Angew Chem Int Ed, 325-11327
250 Takenaka T, Endo M, Suzuki Y, Yang Y, Emura T, Hidaka K, Kato T, Miyata T, Namba K, Sugiyama H. Photoresponsive DNA nanocapsule having an open/close system for capture and release of nanomaterials. Chem-Eur J, 951-14954
251 Acuna GP, Bucher M, Stein IH, Steinhauer C, Kuzyk A, Holzmeister P, Schreiber R, Moroz A, Stefani FD, Liedl T, Simmel FC, Tinnefeld P. Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. ACS Nano, 89-3195
252 Acuna GP, Moeller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P. Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science, : 506-510
253 Holzmeister P, Pibiri E, Schmied JJ, Sen T, Acuna GP, Tinnefeld P. Quantum yield and excitation rate of single molecules close to metallic nanostructures. Nat Commun, 56
254 Pilo PM, Watson A, Demers S, LaBean TH, Finkelstein G. Surface-enhanced raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. Nano Lett, 99-2104
255 Pellegrotti JV, Acuna GP, Puchkova A, Holzmeister P, Gietl A, Lalkens B, Stefani FD, Tinnefeld P. Controlled reduction of photobleaching in DNA origami-gold nanoparticle hybrids. Nano Lett, 31-2836
256 Ko SH, Du K, Liddle JA. Quantum-dot fluorescence lifetime engineering with DNA origami constructs. Angew Chem Int Ed, 93-1197
257 Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA. Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem Int Ed, 06-2309
258 Rosi NL, Thaxton CS, Mirkin CA. Control of nanoparticle assembly by using DNA-modified diatom templates. Angew Chem Int Ed, 00-5503
259 Koplin E, Niemeyer CM, Simon U. Formation of electrically conducting DNA-assembled gold nanoparticle monolayers. J Mater Chem, 38-1344
260 Tokareva I, Hutter E. Hybridization of oligonucleotide-modified silver and gold nanoparticles in aqueous dispersions and on gold films. J Am Chem Soc, :
261 Heimann KJC, Richert C. DNA-mediated site-specific deposition of gold nanoparticles on silicon wafers. Nanoscale, 79-2582
262 Hazarika P, Irrgang J, Spengler M, Niemeyer CM. Biochemical synthesis and manipulation of a 70 nm DNA linker for the assembly of DNA-functionalized gold nanoparticles. Adv Funct Mater, 7-442
263 Sadasivan S, Dujardin E, Li M, Johnson CJ, Mann S. DNA-driven assembly of mesoporous silica/gold satellite nanostructures. Small, 3-106
264 Xing H, Wang Z, Xu Z, Wong NY, Xiang Y, Liu GL, Lu Y. DNA-directed assembly of asymmetric nanoclusters using janus nanoparticles. ACS Nano, 2-809
265 Albert SK, Thelu HVP, Golla M, Krishnan N, Chaudhary S, Varghese R. Self-assembly of DNA-oligo(p-phenylene-ethynylene) hybrid amphiphiles into surface-engineered vesicles with enhanced emission. Angew Chem Int Ed, 52-8357
266 Zheng Y, Lalander CH, Thai T, Dhuey S, Cabrini S, Bach U. Gutenberg-style printing of self-assembled nanoparticle arrays: electrostatic nanoparticle immobilization and DNA-mediated transfer. Angew Chem Int Ed, 98-4402
267 Estephan ZG, Qian Z, Lee D, Crocker JC, Park SJ. Responsive multidomain free-standing films of gold nanoparticles assembled by DNA-directed layer-by-layer approach. Nano Lett, 49-4455
268 Cheng W, Campolongo MJ, Cha JJ, Tan SJ, Umbach CC, Muller DA, Luo D. Free-standing nanoparticle superlattice sheets controlled by DNA. Nat Mater, 9-525
269 Patel PC, Giljohann DA, Daniel WL, Zheng D, Prigodich AE, Mirkin CA. Scavenger receptors mediate cellular uptake of polyvalent oligonucleotide-functionalized gold nanoparticles. Bioconjugate Chem, 50-2256
270 Wu XA, Choi CHJ, Zhang C, Hao L, Mirkin CA. Intracellular fate of spherical nucleic acid nanoparticle conjugates. J Am Chem Soc, :
271 Borse S, Joshi S, Khan A. Enhanced in vitro cytotoxicity and cellular uptake of DNA bases functionalized gold nanoparticles in hela cell lines. RSC Adv, 402-13410
272 Shiang YC, Ou CM, Chen SJ, Ou TY, Lin HJ, Huang CC, Chang HT. Highly efficient inhibition of human immunodeficiency virus type 1 reverse transcriptase by aptamers functionalized gold nanoparticles. Nanoscale, 56-2764
273 Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA. Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano, 41-5646
274 Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA. Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol Pharm, 34-1940
275 Dave N, Liu JW. Protection and promotion of uv radiation-induced liposome leakage via DNA-directed assembly with gold nanoparticles. Adv Mater, 82-3186
276 Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science, :
277 Conde J, de la Fuente JM, Baptista PV. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles. Nanotechnology,
278 Son S, Nam J, Kim J, Kim S, Kim WJ. I-motif-driven Au nanomachines in programmed sirna delivery for gene-silencing and photothermal ablation. ACS Nano, 74-5584
279 Perrett AJ, Dickinson RL, Krpetic Z, Brust M, Lewis H, Eperon IC, Burley GA. Conjugation of peg and gold nanoparticles to increase the accessibility and valency of tethered rna splicing enhancers. Chem Sci, 7-265
280 Diaz JA, Gibbs DJM. Sharpening the thermal release of DNA from nanoparticles: towards a sequential release strategy. Small, 62-2871
281 Alexander CM, Maye MM, Dabrowiak JC. DNA-capped nanoparticles designed for doxorubicin drug delivery. Chem Commun, 18-3420
282 Alexander CM, Hamner KL, Maye MM, Dabrowiak JC. Multifunctional DNA-gold nanoparticles for targeted doxorubicin delivery. Bioconjugate Chem, 61-1271
283 Song L, Ho VHB, Chen C, Yang Z, Liu D, Chen R, Zhou D. Efficient, ph-triggered drug delivery using a pH-responsive DNA-conjugated gold nanoparticle. Adv Healthcare Mater, 5-280
284 Latorre A, Posch C, Garcimartin Y, Celli A, Sanlorenzo M, Vujic I, Ma J, Zekhtser M, Rappersberger K, Ortiz-Urda S, Somoza A. DNA and aptamer stabilized gold nanoparticles for targeted delivery of anticancer therapeutics. Nanoscale, 36-7442
285 Zhang XQ, Xu X, Lam R, Giljohann D, Ho D, Mirkin CA. Strategy for increasing drug solubility and efficacy through covalent attachment to polyvalent DNA-nanoparticle conjugates. ACS Nano, 62-6970
286 Du Z, Luo Q, Yang L, Bing T, Li X, Guo W, Wu K, Zhao Y, Xiong S, Shangguan D, Wang F. Mass spectrometric proteomics reveals that nuclear protein positive cofactor pc4 selectively binds to cross-linked DNA by a trans-platinum anticancer complex. J Am Chem Soc, :
287 Wen Y, Xu L, Li C, Du H, Chen L, Su B, Zhang Z, Zhang X, Song Y. DNA-based intelligent logic controlled release systems. Chem Commun, 10-8412
288 Oh JW, Lim DK, Kim GH, Suh YD, Nam JM. Thiolated DNA-based chemistry and control in the structure and optical properties of plasmonic nanoparticles with ultrasmall interior nanogap. J Am Chem Soc, :
289 Kang JW, So PTC, Dasari RR, Lim DK. High resolution live cell raman imaging using subcellular organelle-targeting SERS-sensitive gold nanoparticles with highly narrow intra-nanogap. Nano Lett, 66-1772
290 Lee JH, Kim GH, Nam JM. Directional synthesis and assembly of bimetallic nanosnowmen with DNA. J Am Chem Soc, :
291 Shen J, Su J, Yan J, Zhao B, Wang D, Wang S, Li K, Liu M, He Y, Mathur S, Fan C, Song S. Bimetallic nano-mushrooms with DNA-mediated interior nanogaps for high-efficiency SERS signal amplification. Nano Res, 1-742
徐凌翔, 陈壬杰, 许海锦, 周元昌, 吴为人. [J]. 科学通报, ): 809-818.
张静, 袁鸿, 蔡瑾, 魏学红, 刘滇生. [J]. 科学通报, ): 630-641.
饶丽, 张明如, 刘娟, 庞月红, 沈晓芳. [J]. 中国科学 化学, ): 274-279.
王萍, 赵建龙, 胡斌, 程祖乐, 白亚楠, 金庆辉, 刘慧颖, 毛红菊, 李三强, 赵建龙. [J]. 中国科学 生命科学, ): 314-320.
杨子辉, 程雨晴, 郭宾, 陈应庄, 马铭, 陈波. [J]. 中国科学 化学, ): 257-262.
陈小燕, 任凌晴, 张继芳, 孙建军. [J]. 中国科学 化学, ): 280-286.
潘亮, 孔华庭, 孙艳红, 王丽华, 樊春海, 诸颖. [J]. 中国科学 化学, ): 188-194.
杨玉东, 刘公召, 李冬至, 徐菁华, 杨林梅. [J]. 科学通报, ): 817-829.
张中山, 王兴, 张成勇, 吕少波. [J]. 中国科学 信息科学, ): .
白志军, 刘雨双, 郭俊, 侯静, 赵欣敏, 张峰. [J]. 中国科学 化学, ): 836-842.
辛天怡, 李西文, 姚辉, 韩建萍, 宋经元, 陈士林. [J]. 中国科学 生命科学, ): 695-702.
李学龙, 史建华, 董永生, 陶大程. [J]. 中国科学 信息科学, ): 827-848.
张坤, 方世强, 张秉坚. [J]. 中国科学 技术科学, ): 635-642.
祝平平, 辛鹏洋, 侯军利. [J]. 中国科学 化学, ): 624-628.
杨玉东, 刘公召, 徐菁华, 杨林梅, 李冬至. [J]. 中国科学 化学, ): 581-596.
版权所有 & 《中国科学》杂志社
地址:北京市东黄城根北街16号,《中国科学 化学》编辑部,100717
电话:010- 传真:010- E-mail:
chemistry@scichina.org
网络系统维护电话:010- E-mail:
sys@scichina.org}

我要回帖

更多关于 成都无创dna产前检测 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信