设n阶矩阵A满足A^2=E,试证:R(E-A) R(E A)=n

您的举报已经提交成功,我们将尽快处理,谢谢!
其实很简单的问题,初中代数里下面两个公式应该知道吧:
1-x^3=(1-x)(1+x+x^2)
1+x^3=(1+x)(1-x+x^2)
代数里的公式在矩...
|E+A|=|AA'+A|=|A(A'+E)|=|A||A'+E|=-|A'+E|=-|A'+E|=-|E+A|
∴2|E+A|=0 ==& |E+A|=0.
大家还关注
(window.slotbydup=window.slotbydup || []).push({
id: '2081942',
container: s,
size: '1000,60',
display: 'inlay-fix'问题已关闭
代为完成的个人任务
提问需要满足:其他人可能遇到相似问题,或问题的解决方法对其他人有所助益。如果通过其他方式解决遇到困难,欢迎提问并说明你的求知过程。
求各位帮看看,本人比较笨,求解答过程
本来不喜欢答作业题……既然这题出现在我时间线上了我就答一下吧……这类题有个特别好用的结论:Sylvester不等式:A,B为n阶矩阵rank(A)+rank(B)&=n+rank(AB)它的证明很多书上有,用分块矩阵。所以第一题就直接是这个不等式的特例,第二题可以证明左边&=右边另外注意到rank(A+-B)&=rank(A)+rank(B),所以左边&=右边,证完了
提供一个用线性变换语言的证明。&br&对于矩阵&img src=&///equation?tex=n%5Ctimes+n& alt=&n\times n& eeimg=&1&&的(实)矩阵&img src=&///equation?tex=A& alt=&A& eeimg=&1&&,我们定义线性变换&img src=&///equation?tex=L_A%3A%5Cmathbf%7BR%7D%5En%5Cto%5Cmathbf%7BR%7D%5En& alt=&L_A:\mathbf{R}^n\to\mathbf{R}^n& eeimg=&1&&,&img src=&///equation?tex=L_A%5Cbm%7Bx%7D%3A%3DA%5Cbm%7Bx%7D%5Cquad+%5Cforall%5C+%5Cbm%7Bx%7D%5Cin%5Cmathbf%7BR%7D%5En& alt=&L_A\bm{x}:=A\bm{x}\quad \forall\ \bm{x}\in\mathbf{R}^n& eeimg=&1&&。&br&对于线性变换&img src=&///equation?tex=T%3AV%5Cto+W& alt=&T:V\to W& eeimg=&1&&,用&img src=&///equation?tex=R%28T%29%3A%3D%5C%7BTv%3Av%5Cin+V%5C%7D& alt=&R(T):=\{Tv:v\in V\}& eeimg=&1&&表示&img src=&///equation?tex=T& alt=&T& eeimg=&1&&的&b&值域&/b&,用&img src=&///equation?tex=N%28T%29%3A%3D%5C%7Bv%5Cin+V%3ATv%3D0_W%5C%7D& alt=&N(T):=\{v\in V:Tv=0_W\}& eeimg=&1&&表示&img src=&///equation?tex=T& alt=&T& eeimg=&1&&的&b&零空间&/b&。很容易证明&img src=&///equation?tex=%5Cdim+%28R%28L_A%29%29%3D%5Cmathrm%7Brank%7D%28A%29& alt=&\dim (R(L_A))=\mathrm{rank}(A)& eeimg=&1&&&br&(证明取决于&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%29& alt=&\mathrm{rank}(A)& eeimg=&1&&的定义)。&br&&br&&b&命题. &/b&&img src=&///equation?tex=A& alt=&A& eeimg=&1&&,&img src=&///equation?tex=B& alt=&B& eeimg=&1&&为&img src=&///equation?tex=n& alt=&n& eeimg=&1&&阶矩阵,如果&img src=&///equation?tex=AB%3D0& alt=&AB=0& eeimg=&1&&,那么&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%29%2B%5Cmathrm%7Brank%7D%28B%29%5Cleq+n& alt=&\mathrm{rank}(A)+\mathrm{rank}(B)\leq n& eeimg=&1&&。&br&&b&证明.&/b&&img src=&///equation?tex=AB%3D0& alt=&AB=0& eeimg=&1&&等价于&img src=&///equation?tex=L_A%5Ccirc+L_B%3D0_%7B%5Cmathbf%7BR%7D%5En%7D& alt=&L_A\circ L_B=0_{\mathbf{R}^n}& eeimg=&1&&,这里&img src=&///equation?tex=0_%7B%5Cmathbf%7BR%7D%5En%7D& alt=&0_{\mathbf{R}^n}& eeimg=&1&&是零线性变换(即&img src=&///equation?tex=0_%7B%5Cmathbf%7BR%7D%5En%7D%5Cbm%7Bx%7D%3D%5Cbm%7B0%7D+%5Cquad+%5Cforall%5C+%5Cbm%7Bx%7D%5Cin%5Cmathbf%7BR%7D%5En& alt=&0_{\mathbf{R}^n}\bm{x}=\bm{0} \quad \forall\ \bm{x}\in\mathbf{R}^n& eeimg=&1&&)。于是我们有对于所有的&img src=&///equation?tex=%5Cbm%7Bx%7D%5Cin%5Cmathbf%7BR%7D%5En& alt=&\bm{x}\in\mathbf{R}^n& eeimg=&1&&,&img src=&///equation?tex=L_A%28L_B%5Cbm%7Bx%7D%29%3D%5Cbm%7B0%7D& alt=&L_A(L_B\bm{x})=\bm{0}& eeimg=&1&&,这说明&img src=&///equation?tex=L_B& alt=&L_B& eeimg=&1&&的值域&img src=&///equation?tex=R%28L_B%29& alt=&R(L_B)& eeimg=&1&&是&img src=&///equation?tex=L_A& alt=&L_A& eeimg=&1&&的零空间&img src=&///equation?tex=N%28L_A%29& alt=&N(L_A)& eeimg=&1&&的子集(当然也是子空间),因此&img src=&///equation?tex=%5Cdim%28R%28L_B%29%29%5Cleq+%5Cdim%28N%28L_A%29%29& alt=&\dim(R(L_B))\leq \dim(N(L_A))& eeimg=&1&&。根据维数定理&img src=&///equation?tex=%5Cdim+%28N%28L_A%29%29%2B%5Cdim%28R%28L_A%29%29%3Dn& alt=&\dim (N(L_A))+\dim(R(L_A))=n& eeimg=&1&&,因此&img src=&///equation?tex=%5Cdim%28R%28L_A%29%29%2B%5Cdim%28R%28L_B%29%29%5Cleq+n& alt=&\dim(R(L_A))+\dim(R(L_B))\leq n& eeimg=&1&&,即&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%29%2B%5Cmathrm%7Brank%7D%28B%29%5Cleq+n& alt=&\mathrm{rank}(A)+\mathrm{rank}(B)\leq n& eeimg=&1&&。&br&&br&&b&命题.&/b& 如果&img src=&///equation?tex=A%5E2%3DI_n& alt=&A^2=I_n& eeimg=&1&&,那么&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%2BI_n%29%2B%5Cmathrm%7Brank%7D%28A-I_n%29%3Dn& alt=&\mathrm{rank}(A+I_n)+\mathrm{rank}(A-I_n)=n& eeimg=&1&&。&br&&b&证明.&/b&&img src=&///equation?tex=A%5E2%3DI_n& alt=&A^2=I_n& eeimg=&1&&,那么&img src=&///equation?tex=%28A-I_n%29%28A%2BI_n%29%3D0& alt=&(A-I_n)(A+I_n)=0& eeimg=&1&&,根据上面的命题&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%2BI_n%29%2B%5Cmathrm%7Brank%7D%28A-I_n%29%5Cleq+n& alt=&\mathrm{rank}(A+I_n)+\mathrm{rank}(A-I_n)\leq n& eeimg=&1&&。注意到&img src=&///equation?tex=%28A%2BI_n%29-%28A-I_n%29%3D2I_n& alt=&(A+I_n)-(A-I_n)=2I_n& eeimg=&1&&,因此&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A-I_n%29%2B%5Cmathrm%7Brank%7D%28A-I_n%29%5Cgeq+n& alt=&\mathrm{rank}(A-I_n)+\mathrm{rank}(A-I_n)\geq n& eeimg=&1&&。这里用到了对于&img src=&///equation?tex=n& alt=&n& eeimg=&1&&阶矩阵&img src=&///equation?tex=A& alt=&A& eeimg=&1&&,&img src=&///equation?tex=B& alt=&B& eeimg=&1&&,&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%5Cpm+B%29%5Cleq+%5Cmathrm%7Brank%7D%28A%29%2B%5Cmathrm%7Brank%7D%28B%29& alt=&\mathrm{rank}(A\pm B)\leq \mathrm{rank}(A)+\mathrm{rank}(B)& eeimg=&1&&。
提供一个用线性变换语言的证明。对于矩阵n\times n的(实)矩阵A,我们定义线性变换L_A:\mathbf{R}^n\to\mathbf{R}^n,L_A\bm{x}:=A\bm{x}\quad \forall\ \bm{x}\in\mathbf{R}^n。对于线性变换T:V\to W,用R(T):=\{Tv:v\in V\}表示T的值域,用N(T):=\{v\in …
A?=E,A的所有特征值不是1就是-1。&br&那么A+E的秩实际上就是特征值1的个数,A-E的秩实际上就是特征值-1的个数,所以加起来就恰好是A的秩,n。&br&&br&update&br&&br&关于A?=E,A的所有特征值不是1就是-1。实际上A的所有Jordan块都有J?=E,所有Jordan都是一阶的。&br&&br&&br&另外,刚刚发现逆命题也是对的。&br&若n阶方阵A有rank(A+E)+rank(A-E)=n,则A?=E。
A?=E,A的所有特征值不是1就是-1。那么A+E的秩实际上就是特征值1的个数,A-E的秩实际上就是特征值-1的个数,所以加起来就恰好是A的秩,n。update关于A?=E,A的所有特征值不是1就是-1。实际上A的所有Jordan块都有J?=E,所有Jordan都是一阶的。另…
已有帐号?
无法登录?
社交帐号登录
PKU EECS - CMU PhD student in CS问题已关闭
代为完成的个人任务
提问需要满足:其他人可能遇到相似问题,或问题的解决方法对其他人有所助益。如果通过其他方式解决遇到困难,欢迎提问并说明你的求知过程。
求各位帮看看,本人比较笨,求解答过程
第一问用公式R(AB)&=R(A)+R(B)-n.第二问先化为(A-E)(A+E)=0,用第一题结论知R(A-E)+R(A+E)&=n,然后用公式R(A)+R(B)&=R(A+B),得R(E-A)+R(E+A)&=R(2E)=n,证毕.
提供一个用线性变换语言的证明。&br&对于矩阵&img src=&///equation?tex=n%5Ctimes+n& alt=&n\times n& eeimg=&1&&的(实)矩阵&img src=&///equation?tex=A& alt=&A& eeimg=&1&&,我们定义线性变换&img src=&///equation?tex=L_A%3A%5Cmathbf%7BR%7D%5En%5Cto%5Cmathbf%7BR%7D%5En& alt=&L_A:\mathbf{R}^n\to\mathbf{R}^n& eeimg=&1&&,&img src=&///equation?tex=L_A%5Cbm%7Bx%7D%3A%3DA%5Cbm%7Bx%7D%5Cquad+%5Cforall%5C+%5Cbm%7Bx%7D%5Cin%5Cmathbf%7BR%7D%5En& alt=&L_A\bm{x}:=A\bm{x}\quad \forall\ \bm{x}\in\mathbf{R}^n& eeimg=&1&&。&br&对于线性变换&img src=&///equation?tex=T%3AV%5Cto+W& alt=&T:V\to W& eeimg=&1&&,用&img src=&///equation?tex=R%28T%29%3A%3D%5C%7BTv%3Av%5Cin+V%5C%7D& alt=&R(T):=\{Tv:v\in V\}& eeimg=&1&&表示&img src=&///equation?tex=T& alt=&T& eeimg=&1&&的&b&值域&/b&,用&img src=&///equation?tex=N%28T%29%3A%3D%5C%7Bv%5Cin+V%3ATv%3D0_W%5C%7D& alt=&N(T):=\{v\in V:Tv=0_W\}& eeimg=&1&&表示&img src=&///equation?tex=T& alt=&T& eeimg=&1&&的&b&零空间&/b&。很容易证明&img src=&///equation?tex=%5Cdim+%28R%28L_A%29%29%3D%5Cmathrm%7Brank%7D%28A%29& alt=&\dim (R(L_A))=\mathrm{rank}(A)& eeimg=&1&&&br&(证明取决于&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%29& alt=&\mathrm{rank}(A)& eeimg=&1&&的定义)。&br&&br&&b&命题. &/b&&img src=&///equation?tex=A& alt=&A& eeimg=&1&&,&img src=&///equation?tex=B& alt=&B& eeimg=&1&&为&img src=&///equation?tex=n& alt=&n& eeimg=&1&&阶矩阵,如果&img src=&///equation?tex=AB%3D0& alt=&AB=0& eeimg=&1&&,那么&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%29%2B%5Cmathrm%7Brank%7D%28B%29%5Cleq+n& alt=&\mathrm{rank}(A)+\mathrm{rank}(B)\leq n& eeimg=&1&&。&br&&b&证明.&/b&&img src=&///equation?tex=AB%3D0& alt=&AB=0& eeimg=&1&&等价于&img src=&///equation?tex=L_A%5Ccirc+L_B%3D0_%7B%5Cmathbf%7BR%7D%5En%7D& alt=&L_A\circ L_B=0_{\mathbf{R}^n}& eeimg=&1&&,这里&img src=&///equation?tex=0_%7B%5Cmathbf%7BR%7D%5En%7D& alt=&0_{\mathbf{R}^n}& eeimg=&1&&是零线性变换(即&img src=&///equation?tex=0_%7B%5Cmathbf%7BR%7D%5En%7D%5Cbm%7Bx%7D%3D%5Cbm%7B0%7D+%5Cquad+%5Cforall%5C+%5Cbm%7Bx%7D%5Cin%5Cmathbf%7BR%7D%5En& alt=&0_{\mathbf{R}^n}\bm{x}=\bm{0} \quad \forall\ \bm{x}\in\mathbf{R}^n& eeimg=&1&&)。于是我们有对于所有的&img src=&///equation?tex=%5Cbm%7Bx%7D%5Cin%5Cmathbf%7BR%7D%5En& alt=&\bm{x}\in\mathbf{R}^n& eeimg=&1&&,&img src=&///equation?tex=L_A%28L_B%5Cbm%7Bx%7D%29%3D%5Cbm%7B0%7D& alt=&L_A(L_B\bm{x})=\bm{0}& eeimg=&1&&,这说明&img src=&///equation?tex=L_B& alt=&L_B& eeimg=&1&&的值域&img src=&///equation?tex=R%28L_B%29& alt=&R(L_B)& eeimg=&1&&是&img src=&///equation?tex=L_A& alt=&L_A& eeimg=&1&&的零空间&img src=&///equation?tex=N%28L_A%29& alt=&N(L_A)& eeimg=&1&&的子集(当然也是子空间),因此&img src=&///equation?tex=%5Cdim%28R%28L_B%29%29%5Cleq+%5Cdim%28N%28L_A%29%29& alt=&\dim(R(L_B))\leq \dim(N(L_A))& eeimg=&1&&。根据维数定理&img src=&///equation?tex=%5Cdim+%28N%28L_A%29%29%2B%5Cdim%28R%28L_A%29%29%3Dn& alt=&\dim (N(L_A))+\dim(R(L_A))=n& eeimg=&1&&,因此&img src=&///equation?tex=%5Cdim%28R%28L_A%29%29%2B%5Cdim%28R%28L_B%29%29%5Cleq+n& alt=&\dim(R(L_A))+\dim(R(L_B))\leq n& eeimg=&1&&,即&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%29%2B%5Cmathrm%7Brank%7D%28B%29%5Cleq+n& alt=&\mathrm{rank}(A)+\mathrm{rank}(B)\leq n& eeimg=&1&&。&br&&br&&b&命题.&/b& 如果&img src=&///equation?tex=A%5E2%3DI_n& alt=&A^2=I_n& eeimg=&1&&,那么&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%2BI_n%29%2B%5Cmathrm%7Brank%7D%28A-I_n%29%3Dn& alt=&\mathrm{rank}(A+I_n)+\mathrm{rank}(A-I_n)=n& eeimg=&1&&。&br&&b&证明.&/b&&img src=&///equation?tex=A%5E2%3DI_n& alt=&A^2=I_n& eeimg=&1&&,那么&img src=&///equation?tex=%28A-I_n%29%28A%2BI_n%29%3D0& alt=&(A-I_n)(A+I_n)=0& eeimg=&1&&,根据上面的命题&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%2BI_n%29%2B%5Cmathrm%7Brank%7D%28A-I_n%29%5Cleq+n& alt=&\mathrm{rank}(A+I_n)+\mathrm{rank}(A-I_n)\leq n& eeimg=&1&&。注意到&img src=&///equation?tex=%28A%2BI_n%29-%28A-I_n%29%3D2I_n& alt=&(A+I_n)-(A-I_n)=2I_n& eeimg=&1&&,因此&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A-I_n%29%2B%5Cmathrm%7Brank%7D%28A-I_n%29%5Cgeq+n& alt=&\mathrm{rank}(A-I_n)+\mathrm{rank}(A-I_n)\geq n& eeimg=&1&&。这里用到了对于&img src=&///equation?tex=n& alt=&n& eeimg=&1&&阶矩阵&img src=&///equation?tex=A& alt=&A& eeimg=&1&&,&img src=&///equation?tex=B& alt=&B& eeimg=&1&&,&img src=&///equation?tex=%5Cmathrm%7Brank%7D%28A%5Cpm+B%29%5Cleq+%5Cmathrm%7Brank%7D%28A%29%2B%5Cmathrm%7Brank%7D%28B%29& alt=&\mathrm{rank}(A\pm B)\leq \mathrm{rank}(A)+\mathrm{rank}(B)& eeimg=&1&&。
提供一个用线性变换语言的证明。对于矩阵n\times n的(实)矩阵A,我们定义线性变换L_A:\mathbf{R}^n\to\mathbf{R}^n,L_A\bm{x}:=A\bm{x}\quad \forall\ \bm{x}\in\mathbf{R}^n。对于线性变换T:V\to W,用R(T):=\{Tv:v\in V\}表示T的值域,用N(T):=\{v\in …
本来不喜欢答作业题……既然这题出现在我时间线上了我就答一下吧……&br&这类题有个特别好用的结论:&br&&b&Sylvester不等式:&/b&A,B为n阶矩阵&br&rank(A)+rank(B)&=n+rank(AB)&br&它的证明很多书上有,用分块矩阵。&br&所以第一题就直接是这个不等式的特例,第二题可以证明左边&=右边&br&另外注意到rank(A+-B)&=rank(A)+rank(B),所以左边&=右边,证完了
本来不喜欢答作业题……既然这题出现在我时间线上了我就答一下吧……这类题有个特别好用的结论:Sylvester不等式:A,B为n阶矩阵rank(A)+rank(B)&=n+rank(AB)它的证明很多书上有,用分块矩阵。所以第一题就直接是这个不等式的特例,第二题可以证明左边&=右边…
已有帐号?
无法登录?
社交帐号登录
但行其事,莫问前程设n阶实方阵A=A^2,E为n阶单位矩阵,证明:R(A)+R(A-E)=n
茶色古道00205
因为 A=A^2
所以 A(A-E) = 0\x0d所以 r(A) + r(A-E) ≤ n.\x0d参: \x0d\x0d又 n = r(E) = r(A + E -A) ≤ r(A) + r(E-A) = r(A) + r(A-E)\x0d参: \x0d所以 r(A) + r(A-E) = n. \x0d\x0d满意请采纳^_^
为您推荐:
其他类似问题
扫描下载二维码设A是n阶矩阵,满足A^2-2A+E=O,则(A+2E)^(-1)=?
小心!答案不是 3^(-n)*E【分析】(可用构造法、或待定系数法)
解这类题的基本思路是:首先构造出
(A+2E)(aA+bE) = E,只要两个矩阵的乘积为E,我们就可以说,矩阵(A+2E)可逆,且逆矩阵为(aA+bE).(其中,a、b为常数) 【解】(待定系数法)
假设(A+2E)可逆,
(A+2E)(aA+bE) = E
,其中,a、b为常数
化简得, aA² + (2a+b)A + (2b-1)E = O
而,A² - 2A + E = O
待定系数法, 令 k*[A² - 2A + E] = O
(k为任意常数)
2a+b = (-2)*k
2b-1 = 1*k
解得,a = k = -1/9,b= 4/9
即,(A+2E)*[ (-1/9)A + (4/9)E ]
综上所述, 矩阵(A+2E)可逆,且(A+2E)^-1 = (-1/9)A + (4/9)E
为您推荐:
其他类似问题
小心!!答案不是 3^(-n)*E【分析】(可用构造法、或待定系数法)
解这类题的基本思路是:首先构造出
(A+2E)(aA+bE) = E,只要两个矩阵的乘积为E,我们就可以说,矩阵(A+2E)可逆,且逆矩阵为(aA+bE)。(其中,a、b为常数) ***************************************************...
扫描下载二维码}

我要回帖

更多关于 m a r c h e n.com 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信