clearance received-to-uptake的意思

EMAIL THIS PAGE TO A FRIEND
From Email:
1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid, &#% (CHN)
C16H28N4O8 · xH2O
to read full text papers when available.http://iet.
Register now to save searches and create alerts
Save links to your favourite articles.
NNew content
Free content
Open access content
Subscribed content
Trial content
Uptake and clearance analysis of Technetium99m labelled iron oxide nanoparticles in a rabbit brain
For access to this article, please select a purchase option:
&?xml version="1.0" encoding="UTF-8"?&&EVENT&&EVENTLOG&&PORTALID&iet&/PORTALID&&SESSIONID&1el0mwcxltxd6.x-iet-live-01&/SESSIONID&&USERAGENT&Mozilla/4.0 ( MSIE 8.0; Windows NT 6.0; Trident/4.0)&/USERAGENT&&IDENTITYID&guest&/IDENTITYID&&IDENTITY_LIST&guest&/IDENTITY_LIST&&IPADDRESS&220.177.198.53&/IPADDRESS&&EVENTTYPE&ACCESS_DENIED&/EVENTTYPE&&CREATEDON&3&/CREATEDON&&/EVENTLOG&&EVENTLOGPROPERTY&&ITEM_ID&http://iet./content/journals/10.1049/iet-nbt.&/ITEM_ID&&/EVENTLOGPROPERTY&&/EVENT&"}
Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for ?75.00
(plus taxes if applicable)
IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.
IET Nanobiotechnology & Recommend this title to your library
Thank youYour recommendation has been sent to your librarian.
DOI: 
Print ISSN
Online ISSN
Nanoparticles as solid colloidal particles are extensively studied and used as anticancer drug delivery agents because of their physical properties. This current research aims to prepare water base suspension of uncoated iron oxide nanoparticles and their biodistribution study to different organs, especially the brain, by using a single photon emission computed tomography gamma camera. The water-based suspension of iron oxide nanoparticles was synthesised by a reformed version of the co-precipitation method and labelled with Tc99m for intravenous injection. The nanoparticles were injected without surface modification. X-ray diffraction (XRD), energy dispersive spectrometry (EDS) and transmission electron microscope (TEM) techniques were used for characterisation. Peaks of XRD and EDS indicate that the particles are magnetite and exist in aqueous suspension. The average diameter of iron oxide nanoparticles without any surface coating determined by TEM is 10 nm. These particles are capable of evading the reticuloendothelial system and can cross the blood-brain barrier in the rabbit. The labelling efficiency of iron oxide nanoparticles labelled with Tc99m is 85%, which is good for the biodistribution study. The sufficient amount of iron oxide nanoparticles concentration in the brain as compared with the surrounding soft tissues and their long blood retention time indicates that the water-based suspension of iron oxide nanoparticles may be an option for drug delivery into the brain.
Inspec keywords:
Other keywords:
References
P.G. Fisher ,
P.A. Buffler
1. Fisher, P.G., Buffler, P.A.: ‘Malignant Gliomas in 2005’, J. Am. Med. Assoc., 2005, 293, pp. 615–617 (doi: 10.1001/jama.293.5.615). .
J. Am. Med. Assoc.
1 onward link is available for this reference.
2. Newton, H.: ‘Primary brain tumors: review of etiology, diagnosis and treatment’, Am. Family Physician, 1994, 49, pp. 787–797. .
Am. Family Physician
R. Mazurchuk ,
R.M. Straubinger
3. Zhou, R., Mazurchuk, R., Straubinger, R.M.: ‘Antivasculature effects of doxorubicin-containing liposomes in an intracranial rat brain tumor model’, Cancer Res., 2002, 62, pp. 2561–2566. .
Cancer Res.
T.A. Diezi ,
4. Bae, Y., Diezi, T.A., Zhao, A., et al: ‘Mixed polymeric micelles for combination cancer chemotherapy through the concurrent delivery of multiple chemotherapeutic agents’, J. Control. Release, 2007, 122, pp. 324–330 (doi: 10.1016/j.jconrel.). .
J. Control. Release
1 onward link is available for this reference.
I. Brigger ,
C. Dubernet ,
P. Couvreur
5. Brigger, I., Dubernet, C., Couvreur, P.: ‘Nanoparticles in cancer therapy and diagnosis’, Adv. Drug Deliv. Rev., 2002, 54, pp. 631–651 (doi: 10.-409X(02)00044-3). .
Adv. Drug Deliv. Rev.
1 onward link is available for this reference.
D.H. Geho ,
C.D. Jones ,
E.F. Petricoin
6. Geho, D.H., Jones, C.D., Petricoin, E.F., et al: ‘Nanoparticles: potential biomarker harvesters’, Curr. Opin. Chem. Biol., 2006, 10, pp. 56–61 (doi: 10.1016/j.cbpa.). .
Curr. Opin. Chem. Biol.
1 onward link is available for this reference.
7. Atri, M.: ‘New technologies and directed agents for applications of cancer imaging’, J. Clin. Oncol., 2006, 24, pp. 3299–3308 (doi: 10.1200/JCO.9). .
J. Clin. Oncol.
1 onward link is available for this reference.
S.M. Nie ,
G.J. Kim ,
J.W. Simons
Nanotechnology applications in cancer.
Annu. Rev. Biomed. Eng.
1 onward link is available for this reference.
K.W. Powers ,
M. Palazuelos ,
B.M. Moudgil
9. Powers, K.W., Palazuelos, M., Moudgil, B.M., et al: ‘Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies’, Nanotoxicology, 2007, 1, pp. 42–51 (doi: 10.). .
Nanotoxicology
1 onward link is available for this reference.
S.E. Gratton ,
P.A. Ropp ,
P.D. Pohlhaus
10. Gratton, S.E., Ropp, P.A., Pohlhaus, P.D., et al: ‘The effect of particle design on cellular internalization pathways’, Proc. Natl. Acad. Sci., 2008, 105, pp. 11613–11618 (doi: 10.1073/pnas.). .
Proc. Natl. Acad. Sci.
1 onward link is available for this reference.
J.A. Champion ,
A. Walker ,
S. Mitragotri
11. Champion, J.A., Walker, A., Mitragotri, S.: ‘Role of particle size in phagocytosis of polymeric microspheres’, Pharm. Res., 2008, 25, pp. 1815–1821 (doi: 10.-008-9562-y). .
Pharm. Res.
1 onward link is available for this reference.
12. Wang, M., Thanou, M.: ‘Targeting nanoparticles to cancer’, Pharmacological Res., 2010, 62, pp. 90–99 (doi: 10.1016/j.phrs.). .
Pharmacological Res.
1 onward link is available for this reference.
A.Z. Wang ,
R. Langer ,
O.C. Farokhzad
13. Wang, A.Z., Langer, R., Farokhzad, O.C.: ‘Nanoparticle delivery of cancer drugs’, Annu. Rev. Med., 2012, 63, pp. 185–198 (doi: 10.1146/annurev-med-544). .
Annu. Rev. Med.
1 onward link is available for this reference.
J.H. Kim ,
14. Kim, K., Kim, J.H., Park, H., et al: ‘Tumor-homing multifunctional nanoparticles for cancer theragnosis: simultaneous diagnosis, drug delivery, and therapeutic monitoring’, J. Control. Release, 2010, 146, pp. 219–227 (doi: 10.1016/j.jconrel.). .
J. Control. Release
1 onward link is available for this reference.
X.-H. Peng ,
15. Peng, X.-H., Qian, X., Mao, H., et al: ‘Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy’, Int. J. Nanomed., 2008, 3, p. 311. .
Int. J. Nanomed.
T.K. Jain ,
M.A. Morales ,
S.K. Sahoo
16. Jain, T.K., Morales, M.A., Sahoo, S.K., et al: ‘Iron oxide nanoparticles for sustained delivery of anticancer agents’, Mol. Pharmaceutics, 2005, 2, pp. 194–205 (doi: 10.1021/mp0500014). .
Mol. Pharmaceutics
1 onward link is available for this reference.
T. Banerjee ,
A. Singh ,
17. Banerjee, T., Singh, A., Sharma, R., et al: ‘Labeling efficiency and biodistribution of Technetium-99m labeled nanoparticles: interference by colloidal tin oxide particles’, Int. J. Pharmaceutics, 2005, 289, pp. 189–195 (doi: 10.1016/j.ijpharm.). .
Int. J. Pharmaceutics
1 onward link is available for this reference.
S. Wohlfart ,
S. Gelperina ,
J. Kreuter
18. Wohlfart, S., Gelperina, S., Kreuter, J.: ‘Transport of drugs across the blood–brain barrier by nanoparticles’, J. Control. Release, 2012, 161, pp. 264–273 (doi: 10.1016/j.jconrel.). .
J. Control. Release
1 onward link is available for this reference.
C.-M. Fu ,
Y.-F. Wang ,
Y.-C. Chao
19. Fu, C.-M., Wang, Y.-F., Chao, Y.-C., et al: ‘Directly labeling ferrite nanoparticles with Tc-99m radioisotope for diagnostic applications’, IEEE Trans. Magn., 2004, 40, pp. 3003–3005 (doi: 10.1109/TMAG.). .
IEEE Trans. Magn.
1 onward link is available for this reference.
20. Predoi, D.: ‘A study on iron oxide nanoparticles coated with dextrin obtained by coprecipitation’, Dig. J. Nanomater. Biostruct., 2007, 2, pp. 169–173. .
Dig. J. Nanomater. Biostruct.
S.J. Douglas ,
S.S. Davis ,
21. Douglas, S.J., Davis, S.S., Illum, L.: ‘Biodistribution of poly (butyl 2-cyanoacrylate) nanoparticles in rabbits’, Int. J. Pharmaceutics, 1986, 34, pp. 145–152 (doi: 10.73(86)90021-9). .
Int. J. Pharmaceutics
1 onward link is available for this reference.
22. Wang, J., Ding, J., Jin, N., et al: ‘Pharmacokinetic parameters and tissue distribution of magnetic Fe’, Int. J. Nanomed., 2010, 5, pp. 861–866. .
Int. J. Nanomed.
S.D. Perrault ,
C. Walkey ,
T. Jennings
23. Perrault, S.D., Walkey, C., Jennings, T., et al: ‘Mediating tumor targeting efficiency of nanoparticles through design’, Nano Lett., 2009, 9, pp. 1909–1915 (doi: 10.1021/nl900031y). .
Nano Lett.
1 onward link is available for this reference.
N.S. Kommareddi ,
24. Kommareddi, N.S., Tata, M., John, V.T., et al: ‘Synthesis of superparamagnetic polymer-ferrite composites using surfactant microstructures’, Chem. Mater., 1996, 8, pp. 801–809 (doi: 10.1021/cm940485o). .
Chem. Mater.
1 onward link is available for this reference.
N. Fauconnier ,
25. Fauconnier, N., Pons, J., Roger, J., et al: ‘Thiolation of magnemite nanoparticles by dimercaptosuccinic acid’, J. Colloid Interface Sci., 1997, 194, pp. 427–433 (doi: 10.1006/jcis.). .
J. Colloid Interface Sci.
1 onward link is available for this reference.
M. Ahmad ,
K. Rashid ,
26. Ahmad, M., Rashid, K., Nadeem, M., et al: ‘A simple method to prepare aqueous dispersion of iron oxide nanoparticles and their biodistribution study’, J. Colloid Sci. Biotechnol., 2012, 1, pp. 201–209 (doi: 10.1166/jcsb.). .
J. Colloid Sci. Biotechnol.
1 onward link is available for this reference.
S. Kayal ,
R. Ramanujan
27. Kayal, S., Ramanujan, R.: ‘Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery’, Mater. Sci. Eng., C, 2010, 30, pp. 484–490 (doi: 10.1016/j.msec.). .
Mater. Sci. Eng., C
1 onward link is available for this reference.
O. Karaagac ,
H. Kockar ,
28. Karaagac, O., Kockar, H., Beyaz, S., et al: ‘A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: iron ion concentration effect’, IEEE Trans. Magn., 2010, 46, pp. 3978–3983 (doi: 10.1109/TMAG.). .
IEEE Trans. Magn.
1 onward link is available for this reference.
Related content
content/journals/10.1049/iet-nbt.
pub_keyword,iet_inspecKeyword,pub_concept
css({display: 'none', color: '#fff', 'background-color': '#000',
'text-align': 'left', 'opacity': '0.6','border-radius': '4px',
position: 'fixed', 'font-size': '12px', 'line-height': '13px',
'box-shadow': '12px 12px 12px #777', 'padding': '8px 8px 8px 8px',
right: '8px', bottom: '8px',
width: '340px', height: 'auto'})
$('a',box).css({color: '#fff', 'margin': '0 0 0 0', 'font-weight': 'bold','text-decoration': 'none'});
$('p',box).css({margin: '0 0 5px 0', color: '#fff',padding: '0 5px 0 5px','font-size': '12px','font-family': 'arial'});
$('a[name=cancel]',box).click(function(e) {
box.hide();
// sets cookie
//document.cookie='IET_cookies_reminder= expires='+new Date((new Date()).getTime()+);
//Sets expiration date for cookie
var expireDate = new Date();
expireDate.setTime(expireDate.getTime()+(365*24*60*60*1000));
expireDate = expireDate.toGMTString();
var cookieName = 'IET_cookies_reminder';
var cookieValue = 'true';
var myDate = new Date();
myDate.setMonth(myDate.getMonth() + 12);
//document.cookie = cookieName +"=" + cookieValue + ";domain=.theiet.expires=" + myD
//document.cookie = cookieName +'=' + cookieValue + ';path=;domain=digital-library.theiet.expires=Thu, 2 Aug :00 UTC';
document.cookie = cookieName +'=' + cookieValue + '; expires='+ expireDate + '; path=/'
$('a[name=remindmelater]',box).click(function(e) {
box.hide();
// sets cookie
var cookieName = 'IET_cookies_reminder';
var cookieValue = 'true';
var myDate = new Date();
myDate.setMonth(myDate.getMonth() + 12);
//Sets expiration date for cookie
var expireDate = new Date();
expireDate.setTime(expireDate.getTime()+(365*24*60*60*1000));
expireDate = expireDate.toGMTString();
document.cookie = cookieName +'=' + cookieValue + '; expires='+ expireDate +'; path=/'
window.location = 'http://www.theiet.org/help/cookies.cfm?origin=cookie-popout'
$('body').append(box);
$(box).show('slow');
$('#ietCookiePanel').delay(10000).fadeOut(); // panel will fade out after X seconds
$('#show_release').click(function (e) {
window.alert("IET app version \"0001\"");
This is a required field
Please enter a valid email addressUse of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo.
- PubMed - NCBI
The NCBI web site requires JavaScript to function.
FormatSummarySummary (text)AbstractAbstract (text)MEDLINEXMLPMID ListChoose DestinationFileClipboardCollectionsE-mailOrderMy BibliographyCitation managerFormatSummary (text)Abstract (text)MEDLINEXMLPMID ListCSVCreate File1 selected item: FormatSummarySummary (text)AbstractAbstract (text)MEDLINEXMLPMID ListMeSH and Other DataE-mailSubjectAdditional textE-mailAdd to ClipboardAdd to CollectionsOrder articlesAdd to My BibliographyGenerate a file for use with external citation management software.Create File
):859-65. Epub
2007 Mar 7.Use of hepatocytes to assess the contribution of hepatic uptake to clearance in vivo.1, , , , .1Department of Physical and Metabolic Science, AstraZeneca Charnwood, Bakewell Road, Loughborough, Leics, LE11 5RH, England. matt-AbstractThe wealth of information that has emerged in recent years detailing the substrate specificity of hepatic transporters necessitates an investigation into their potential role in drug elimination. Therefore, an assay in which the loss of parent compound from the incubation medium into hepatocytes ("media loss" assay) was developed to assess the impact of hepatic uptake on unbound drug intrinsic clearance in vivo (CL(int ub in vivo)). Studies using conventional hepatocyte incubations for a subset of 36 AstraZeneca new chemical entities (NCEs) resulted in a poor projection of CL(int ub in vivo) (r2 = 0.25, p = 0.002, average fold error = 57). This significant underestimation of CL(int ub in vivo) suggested that metabolism was not the dominant clearance mechanism for the majority of compounds examined. However, CL(int ub in vivo) was described well for this dataset using an initial compound "disappearance" CL(int) obtained from media loss assays (r2 = 0.72, p = 6.3 x 10(-11), average fold error = 3). Subsequent studies, using this method for the same 36 NCEs, suggested that the active uptake into human hepatocytes was generally slower (3-fold on average) than that observed with rat hepatocytes. The accurate prediction of human CL(int ub in vivo) (within 4-fold) for the marketed drug transporter substrates montelukast, bosentan, atorvastatin, and pravastatin confirmed further the utility of this assay. This work has described a simple method, amenable for use within a drug discovery setting, for predicting the in vivo clearance of drugs with significant hepatic uptake.PMID:
[PubMed - indexed for MEDLINE]
Free full textPublication TypesMeSH TermsSubstancesFull Text SourcesOther Literature SourcesMiscellaneous
Supplemental Content
External link. Please review our .}

我要回帖

更多关于 clearance constraint 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信