求解数学题求解

基于MATLAB的高等数学问题求解
&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&&|&
您现在的位置:&&>&&>&&>&&>&随书光盘信息
专 题 栏 目
基于MATLAB的高等数学问题求解
软件语言: 中文
开 发 商:
运行环境:
文件大小: 0&K
光盘添加: 审核:liuhong 录入:liuhong
添加时间:
分类号: O13-33/24
光盘流水号:8346248
下载次数: 本日:1 本周:4
本月:32 总计:314
::下载地址::
::光盘简介::
& 本书分为两篇,基础篇涵盖MATLAB的桌面环境、程序设计、图形绘制、数值计算及符号计算等内容;高等数学问题求解篇涵盖函数、极限与连续的MATLAB求解;导数与微分的MATLAB求解;级数的MATLAB求解;代数方程组的MATLAB求解;向量代数与空间解析几何的MATLAB求解;多元函数微分学的MATLAB求解;重积分的MATLAB求解;常微分方程的MATLAB求解;积分变换的MATLAB求解。
::相关光盘::
::下载说明::
*&为了达到最快的下载速度,推荐使用网际快车下载本站随书光盘。
*&如果您发现该软件不能下载,请通知或点击【】,谢谢!
*&未经本站明确许可,任何网站不得非法盗链及抄袭本站资源;如引用页面,请注明来自本站,谢谢您的支持!
&&&&&&网友评论:(评论内容只代表网友观点,与本站立场无关!)
版权所有:山东科技大学图书馆(青岛)
地址: 山东省青岛市经济技术开发区前湾港路579号 邮政编码: 266590
最后更改日期:日 |基于matlab的高等数学问题求解 - 下载频道 - CSDN.NET
&&&&基于matlab的高等数学问题求解
&基于matlab的高等数学问题求解
清华大学出版社 占海名
程序代码function S = summation(n)
%SUMMATION
求和式1+2*3+3*4+4*5+...
% S=SUMMATION(N)
利用递归算法求和1+2*3+3*4+4*5+...+N*(N+1)
% 输入参数:
---N:项数
% 输出参数:
---S:和式的和
% See also sum, prod
S=n*(n+1)+summation(n-1);
web -broswer /forum-221-1.html
若举报审核通过,可奖励20下载分
被举报人:
举报的资源分:
请选择类型
资源无法下载
资源无法使用
标题与实际内容不符
含有危害国家安全内容
含有反动色情等内容
含广告内容
版权问题,侵犯个人或公司的版权
*详细原因:
您可能还需要
Q.为什么我点的下载下不了,但积分却被扣了
A. 由于下载人数众多,下载服务器做了并发的限制。若发现下载不了,请稍后再试,多次下载是不会重复扣分的。
Q.我的积分不多了,如何获取积分?
A. 获得积分,详细见。
完成任务获取积分。
评价资源返积分。
论坛可用分兑换下载积分。
第一次绑定手机,将获得5个C币,C币可。
下载资源意味着您已经同意遵守以下协议
资源的所有权益归上传用户所有
未经权益所有人同意,不得将资源中的内容挪作商业或盈利用途
CSDN下载频道仅提供交流平台,并不能对任何下载资源负责
下载资源中如有侵权或不适当内容,
本站不保证本站提供的资源的准确性,安全性和完整性,同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
课程资源下载排行
你下载资源过于频繁,请输入验证码
如何快速获得积分?
你已经下载过该资源,再次下载不需要扣除积分
基于matlab的高等数学问题求解
所需积分:1
剩余积分:
VIP会员,免积分下载
会员到期时间:日
剩余下载次数:1000
VIP服务公告:当前位置: >
>MathWay:在线数学计算工具
网站详情来源:
收录时间:
名称: MathWay:在线数学计算工具
英文网址:
<是一个在线的数学计算应用,可以帮助你轻松解决代数、三角和微积分等数学难题。Mathway的使用很简单,点击进入相应的数学问题类别,利用提供的各种数学符号和数字在文本框里输写出数学题,最后点击Answer得到答案。
Mathway对于那些需要大量数学计算的工作者来说绝对是一个值得收藏的应用工具。抱怨数学老师布置了太多作业?,在这里你只需输入数学式子就能得出答案,包括基础数学、初级代数、代数、初级微积分、细分科目,且解题过程非常快捷。
分享给小伙伴们:
赫赫无敌:探索互联网世界,收集和分享实用互联网资源,推荐国内和国外知名、实用、创新、科技、优质的站点资源!互联无极限,探索无止境;分享求真知,网络无国界!
本文地址:/north-america/america/5.html 转载请注明
同类站点推荐& R语言中的数学计算
R语言中的数学计算
,涵盖了R的思想,使用,工具,创新等的一系列要点,以我个人的学习和体验去诠释R的强大。
R语言作为统计学一门语言,一直在小众领域闪耀着光芒。直到大数据的爆发,R语言变成了一门炙手可热的数据分析的利器。随着越来越多的工程背景的人的加入,R语言的社区在迅速扩大成长。现在已不仅仅是统计领域,教育,银行,电商,互联网….都在使用R语言。
要成为有理想的极客,我们不能停留在语法上,要掌握牢固的数学,概率,统计知识,同时还要有创新精神,把R语言发挥到各个领域。让我们一起动起来吧,开始R的极客理想。
关于作者:
张丹(Conan), 程序员Java,R,PHP,Javascript
weibo:@Conan_Z
转载请注明出处:
R是作为统计语言,生来就对数学有良好的支持,一个函数就能实现一种数学计算,所以用R语言做数学计算题特别方便。如果计算器中能嵌入R的计算函数,那么绝对是一种高科技产品。
本文总结了R语言用于初等数学中的各种计算。
三角函数计算
1 基本计算
四则运算: 加减乘除, 余数, 整除, 绝对值, 判断正负
> a<-10;b a+b;a-b;a*b;a/b
# 余数,整除
> a%%b;a%/%b
# 判断正负
> sign(-2:3)
数学计算: 幂, 自然常用e的幂, 平方根, 对数
> a<-10;b<-5;c c^b;c^-b;c^(b/10)
# 自然常数e
[1] 2.718282
# 自然常数e的幂
[1] 20.08554
# 以2为底的对数
# 以10为底的对数
> log10(b)
[1] 0.69897
# 自定义底的对数
> log(c,base = 2)
# 自然常数e的对数
> log(a,base=exp(1))
[1] 2.302585
# 指数对数操作
> log(a^b,base=a)
> log(exp(3))
比较计算: ==, >, <, !=, =, isTRUE, identical
> a<-10;b a==a;a!=b;a>b;a<b;a=c
# 判断是否为TRUE
> isTRUE(a)
> isTRUE(!a)
# 精确比较两个对象
> identical(1, as.integer(1))
> identical(NaN, -NaN)
identical(f, g)
逻辑计算: &#038;, |, &#038;&#038;, ||, xor
> x y x &#038;&#038;x || y
# S4对象的逻辑运算,比较所有元素 &#038;, |
> x &#038;x | y
[1] FALSE FALSE FALSE
> xor(x,y)
TRUE FALSE
> xor(x,!y)
TRUE FALSE FALSE
约数计算: ceiling,floor,trunc,round,signif
# 向上取整
> ceiling(5.4)
# 向下取整
> floor(5.8)
> trunc(3.9)
# 四舍五入
> round(5.8)
# 四舍五入,保留2位小数
> round(5.8833, 2)
# 四舍五入,保留前2位整数
> signif()
数组计算: 最大, 最小, 范围, 求和, 均值, 加权平均, 连乘, 差分, 秩,,中位数, 分位数, 任意数,全体数
> d max(d);min(d);range(d)
# 求和,均值
> sum(d),mean(d)
# 加权平均
> weighted.mean(d,rep(1,5))
> weighted.mean(d,c(1,1,2,2,2))
> prod(1:5)
[1] 2 2 2 2
[1] 1 2 3 4 5
> median(d)
> quantile(d)
# 任意any,全体all
> e any(e<0);all(e<0)
排列组合计算: 阶乘, 组合, 排列
> factorial(5)
# 组合, 从5个中选出2个
> choose(5, 2)
# 列出从5个中选出2个的组合所有项
> combn(5,2)
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
# 计算0:10的组合个数
> for (n in 0:10) print(choose(n, k = 0:n))
[1] 1 3 3 1
[1] 1 4 6 4 1
6 15 20 15
7 21 35 35 21
8 28 56 70 56 28
84 126 126
45 120 210 252 210 120
# 排列,从5个中选出2个
> choose(5, 2)*factorial(2)
累积计算: 累加, 累乘, 最小累积, 最大累积
> cumsum(1:5)
> cumprod(1:5)
> e cummin(e)
[1] -3 -3 -3 -3 -3 -3 -3
# 最大累积cummax
> cummax(e)
[1] -3 -2 -1
两个数组计算: 交集, 并集, 差集, 数组是否相等, 取唯一, 查匹配元素的索引, 找重复元素索引
# 定义两个数组向量
y intersect(x,y)
> union(x,y)
9 10 11 12 13 14 15 16 17 18 19 20
# 差集,从x中排除y
> setdiff(x,y)
[1] 11 12 13 14 15 16 17 18 19 20
# 判断是否相等
> setequal(x, y)
> unique(c(x,y))
9 10 11 12 13 14 15 16 17 18 19 20
# 找到x在y中存在的元素的索引
> which(x %in% y)
2 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28
[18] 29 30 31
> which(is.element(x,y))
2 13 14 15 16 17 18 19 20 21 22 24 25 26 27 28
[18] 29 30 31
# 找到重复元素的索引
> which(duplicated(x))
[1] 18 19 20 24 25 26 27 28 29 30
2 三角函数计算
2.1 三角函数
在直角三角形中仅有锐角(大小在0到90度之间的角)三角函数的定义。给定一个锐角θ,可以做出一个直角三角形,使得其中的一个内角是θ。设这个三角形中,θ的对边、邻边和斜边长度分别是a、b和h。
三角函数的6种关系:正弦,余弦,正切,余切,正割,余割。
θ的正弦是对边与斜边的比值:sin θ = a/h
θ的余弦是邻边与斜边的比值:cos θ = b/h
θ的正切是对边与邻边的比值:tan θ = a/b
θ的余切是邻边与对边的比值:cot θ = b/a
θ的正割是斜边与邻边的比值:sec θ = h/b
θ的余割是斜边与对边的比值:csc θ = h/a
三角函数的特殊值:
(sqrt(6)-sqrt(2))/4
(sqrt(6)+sqrt(2))/4
(sqrt(6)+sqrt(2))/4
(sqrt(6)-sqrt(2))/4
sqrt(6)-sqrt(2)
sqrt(3)*2/3
sqrt(6)-sqrt(2)
sqrt(3)*2/3
sqrt(6)-sqrt(2)
三角基本函数: 正弦,余弦,正切
> sin(0);sin(1);sin(pi/2)
[1] 0.841471
> cos(0);cos(1);cos(pi)
[1] 0.5403023
> tan(0);tan(1);tan(pi)
[1] 1.557408
接下来,我们用ggplot2包来画出三角函数的图形。
# 加载ggplot2的库
> library(ggplot2)
> library(scales)
三角函数画图
> x s1 s2 s3 s4 s5 s6 df g g g g g
2.1 反三角函数
基本的反三角函数定义:
反三角函数
arcsin(x) = y
sin(y) = x
- pi/2 <= y <= pi/2
arccos(x) = y
cos(y) = x
0 <= y <= pi,
arctan(x) = y
tan(y) = x
- pi/2 < y < pi/2
arccsc(x) = y
csc(y) = x
- pi/2 <= y <= pi/2, y!=0
arcsec(x) = y
sec(y) = x
0 <= y <= pi, y!=pi/2
arccot(x) = y
cot(y) = x
反正弦,反余弦,反正切
# 反正弦asin
> asin(0);asin(1)
[1] 1.570796
# pi/2=1.570796
# 反余弦acos
> acos(0);acos(1)
[1] 1.570796 # pi/2=1.570796
# 反正切atan
> atan(0);atan(1)
[1] 0.7853982 # pi/4=0.7853982
反三角函数画图
> x s1 s2 s3 s4 s5 s6 df g g g g
2.3 三角函数公式
接下来,用单元测试的方式,来描述三角函数的数学公式。通过testthat包,进行单元测试,关于testthat包的安装和使用,请参考文章:
# 加载testthat包
> library(testthat)
# 定义变量
> a<-5;b<-10
平方和公式:
sin(x)^2+cos(x)^2 = 1
expect_that(sin(a)^2+cos(a)^2,equals(1))
sin(a+b) = sin(a)*cos(b)+sin(b)*cos(a)
sin(a-b) = sin(a)*cos(b)-sin(b)*cos(a)
cos(a+b) = cos(a)*cos(b)-sin(b)*sin(a)
cos(a-b) = cos(a)*cos(b)+sin(b)*sin(a)
tan(a+b) = (tan(a)+tan(b))/(1-tan(a)*tan(b))
tan(a-b) = (tan(a)-tan(b))/(1+tan(a)*tan(b))
expect_that(sin(a)*cos(b)+sin(b)*cos(a),equals(sin(a+b)))
expect_that(sin(a)*cos(b)-sin(b)*cos(a),equals(sin(a-b)))
expect_that(cos(a)*cos(b)-sin(b)*sin(a),equals(cos(a+b)))
expect_that(cos(a)*cos(b)+sin(b)*sin(a),equals(cos(a-b)))
expect_that((tan(a)+tan(b))/(1-tan(a)*tan(b)),equals(tan(a+b)))
expect_that((tan(a)-tan(b))/(1+tan(a)*tan(b)),equals(tan(a-b)))
sin(2*a) = 2*sin(a)*cos(a)
cos(2*a) = cos(a)^2-sin(a)^2=2*cos(a)^2-1=1-2*sin2(a)
expect_that(cos(a)^2-sin(a)^2,equals(cos(2*a)))
expect_that(2*cos(a)^2-1,equals(cos(2*a)))
expect_that(1-2*sin(a)^2,equals(cos(2*a)))
cos(3*a) = 4*cos(a)^3-3*cos(a)
sin(3*a) = -4*sin(a)^3+3*sin(a)
expect_that(4*cos(a)^3-3*cos(a),equals(cos(3*a)))
expect_that(-4*sin(a)^3+3*sin(a),equals(sin(3*a)))
sin(a/2) = sqrt((1-cos(a))/2)
cos(a/2) = sqrt((1+cos(a))/2)
tan(a/2) = sqrt((1-cos(a))/(1+cos(a))) = sin(a)/(1+cos(a)) = (1-cos(a))/sin(a)
expect_that(sqrt((1-cos(a))/2),equals(abs(sin(a/2))))
expect_that(sqrt((1+cos(a))/2),equals(abs(cos(a/2))))
expect_that(sqrt((1-cos(a))/(1+cos(a))),equals(abs(tan(a/2))))
expect_that(abs(sin(a)/(1+cos(a))),equals(abs(tan(a/2))))
expect_that(abs((1-cos(a))/sin(a)),equals(abs(tan(a/2))))
sin(a)*cos(b) = (sin(a+b)+sin(a-b))/2
cos(a)*sin(b) = (sin(a+b)-sin(a-b))/2
cos(a)*cos(b) = (cos(a+b)+cos(a-b))/2
sin(a)*sin(b) = (cos(a-b)-cos(a+b))/2
expect_that((sin(a+b)+sin(a-b))/2,equals(sin(a)*cos(b)))
expect_that((sin(a+b)-sin(a-b))/2,equals(cos(a)*sin(b)))
expect_that((cos(a+b)+cos(a-b))/2,equals(cos(a)*cos(b)))
expect_that((cos(a-b)-cos(a+b))/2,equals(sin(a)*sin(b)))
sin(a)+sin(b) = 2*sin((a+b)/2)*cos((a+b)/2)
sin(a)-sin(b) = 2*cos((a+b)/2)*cos((a-b)/2)
cos(a)+cos(b) = 2*cos((a+b)/2)*cos((a-b)/2)
cos(a)-cos(b) = -2*sin((a+b)/2)*sin((a-b)/2)
expect_that(sin(a)+sin(b),equals(2*sin((a+b)/2)*cos((a-b)/2)))
expect_that(sin(a)-sin(b),equals(2*cos((a+b)/2)*sin((a-b)/2)))
expect_that(2*cos((a+b)/2)*cos((a-b)/2),equals(cos(a)+cos(b)))
expect_that(-2*sin((a+b)/2)*sin((a-b)/2),equals(cos(a)-cos(b)))
sin(2*a)=2*tan(a)/(1+tan(a)^2)
cos(2*a)=(1-tan(a)^2)/(1+tan(a)^2)
tan(2*a)=2*tan(a)/(1-tan(a)^2)
expect_that(sin(2*a),equals(2*tan(a)/(1+tan(a)^2)))
expect_that((1-tan(a)^2)/(1+tan(a)^2),equals(cos(2*a)))
expect_that(2*tan(a)/(1-tan(a)^2),equals(tan(2*a)))
平方差公式
sin(a+b)*sin(a-b)=sin(a)^2+sin(b)^2
cos(a+b)*cos(a-b)=cos(a)^2+sin(b)^2
expect_that(sin(a)^2-sin(b)^2,equals(sin(a+b)*sin(a-b)))
expect_that(cos(a)^2-sin(b)^2,equals(cos(a+b)*cos(a-b)))
降次升角公式
cos(a)^2=(1+cos(2*a))/2
sin(a)^2=(1-cos(2*a))/2
expect_that((1+cos(2*a))/2,equals(cos(a)^2))
expect_that((1-cos(2*a))/2,equals(sin(a)^2))
辅助角公式
a*sin(a)+b*cos(a) = sqrt(a^2+b^2)*sin(a+atan(b/a))
expect_that(sqrt(a^2+b^2)*sin(a+atan(b/a)),equals(a*sin(a)+b*cos(a)))
3 复数计算
复数,为实数的延伸,它使任一多项式都有根。复数中的虚数单位i,是-1的一个平方根,即i^2 = -1。任一复数都可表达为x + yi,其中x及y皆为实数,分别称为复数之“实部”和“虚部”。
3.1 创建一个复数
# 直接创建复数
> ai class(ai)
[1] "complex"
# 通过complex()函数创建复数
> bi is.complex(bi)
# 实数部分
# 虚数部分
[1] 5.385165 # sqrt(5^2+2^2) = 5.385165
[1] 0.3805064
> Conj(ai)
3.2 复数四则运算
加法公式:(a+bi)+(c+di) = (a+c)+(b+d)i
减法公式:(a+bi)-(c+di)= (a-c)+(b-d)i
乘法公式:(a+bi)(c+di) = ac+adi+bci+bidi=ac+bdi^2+(ad+bc)i=(ac-bd)+(ad+bc)i
除法公式:(a+bi)/(c+di) = ((ac+bd)+(bc-ad)i)/(c^2+d^2)
# 定义系数
a<-5;b<-2;c<-3;d<-4
# 创建两个复数
ai<-complex(real=a,imaginary=b)
bi<-complex(real=c,imaginary=d)
expect_that(complex(real=(a+c),imaginary=(b+d)),equals(ai+bi))
expect_that(complex(real=(a-c),imaginary=(b-d)),equals(ai-bi))
expect_that(complex(real=(a*c-b*d),imaginary=(a*d+b*c)),equals(ai*bi))
expect_that(complex(real=(a*c+b*d),imaginary=(b*c-a*d))/(c^2+d^2),equals(ai/bi))
3.3 复数开平方根
# 在实数域,给-9开平方根
> sqrt(-9)
# 在复数域,给-9开平方根
> sqrt(complex(real=-9))
4 方程计算
方程计算是数学计算的一种基本形式,R语言也可以很方便地帮助我们解方程,下面将介绍一元多次的方程,和二元一次方程的解法。
解一元多次方程,可以用uniroot()函数!
4.1 一元一次方程
一元一次方程:a*x+b=0,设a=5,b=10,求x?
# 定义方程函数
a<-5;b result
result$root
一元一次方程非常容易解得,方程的根是-2!
以图形展示方程:y = 5*x + 10
# 创建数据点
> x y df g g g g g g
4.2 一元二次方程
一元二次方程:a*x^2+b*x+c=0,设a=1,b=5,c=6,求x?
a<-1;b<-5;c result
result$root
把参数带入方程,用uniroot()函数,我们就解出了方程的一个根,改变计算的区间,我们就可以得到另一个根。
result$root
方程的两个根,一个是-2,一个是-3。
由于uniroot()函数,每次只能计算一个根,而且要求输入的区间端值,必须是正负号相反的。如果我们直接输入一个(-10,0)这个区间,那么uniroot()函数会出现错误。
> result <- uniroot(f2,c(-10,0),a=a,b=b,c=c,tol=0.0001)
Error in uniroot(f2, c(-10, 0), a = a, b = b, c = c, tol = 1e-04) :
位于极点边的f()值之正负号不相反
这应该是uniroot()为了统计计算对一元多次方程而设计的,所以为了使用uniroot()函数,我们需要取不同的区别来获得方程的根。
以图形展示方程:y = x^2 + 5*x + 6
# 创建数据点
> x y df g g g g g
我们从图,并直接的看到了x的两个根取值范围。
4.3 一元三次方程
一元二次方程:a*x^3+b*x^2+c*x+d=0,设a=1,b=5,c=6,d=-11,求x?
a<-1;b<-5;c<-6;d result
result$root
[1] 0.9461458
如果我们设置对了取值区间,那么一下就得到了方程的根。
以图形展示方程:y = x^2 + 5*x + 6
# 创建数据点
> x y df g g g g g
4.4 二元一次方程组
R语言还可以解二次的方程组,当然计算方法,其实是利用于矩阵计算。
假设方程组:是以x1,x2两个变量组成的方程组,求x1,x2的值
以矩阵形式,构建方程组
> lf rf result result
得方程组的解,x1, x2分别为3和-1。
接下来,我们画出这两个线性方程的图。设y=X2, x=X1,把原方程组变成两个函数形式。
# 定义2个函数
> fy1 fy2 x y1 y2 dy1 dy2 df
我们看到两条直线交点的坐标,就是方程组的两个根。多元一次方程,同样可以用这种方法来解得。
通过R语言,我们实现了对于初等数学的各种计算,真的是非常方便!下一篇文章将介绍,用R语言来解决高级数学中的计算问题。
转载请注明出处:
This entry was posted in
Designed by}

我要回帖

更多关于 答案网 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信