太阳光多久到地球已经照射地球50亿年了,地球在这50亿年中积累的什么能存储在什么,什么,什么等什么能源中

学者拆穿2012末日论谎言 真正末日需等50亿年_百度文库
两大类热门资源免费畅读
续费一年阅读会员,立省24元!
评价文档:
10页免费51页免费4页免费4页¥2.001页免费6页免费6页免费6页免费6页免费4页免费
喜欢此文档的还喜欢7页免费2页免费2页免费32页1下载券5页1下载券
学者拆穿2012末日论谎言 真正末日需等50亿年|
把文档贴到Blog、BBS或个人站等:
普通尺寸(450*500pix)
较大尺寸(630*500pix)
你可能喜欢太阳辐射_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&太阳辐射
太阳辐射(solar radiation)是指太阳向发射的和。地球所接受到的太阳辐射仅为太阳向放射的总辐射能量的二十亿分之一,但却是地球的主要能量源泉外文名solar radiation又&&&&称日射属&&&&性太阳向发射的和分&&&&类直达日射和漫射日射影&&&&响提供光和热,变化形成热带、温带和
到达地球大气上界的太阳辐射称为天文太阳辐射量。在地球位于处时,地球大气上界垂直于太阳光线的单位面积在单位时间内所受到的太阳辐射的全谱总,称为。太阳常数的常用单位为瓦/米2。因观测方法和技术不同,得到的太阳常数值不同。太阳常数值是1368瓦/米2 。太阳辐射是一种短波辐射。
到达地表的全球年辐射总量的分布基本上成带状,只有在地区受到破坏。在赤道地区,由于多云,年辐射总量并不最高。在南北半球的,特别是在大陆荒漠地区,年辐射总量较大,最大值在东北部。每日天文世界气象组织 (WMO)1981年公布的太阳常数值是1368瓦/米2。地球大气上界的太阳辐射光谱的99%以上在波长 0.15~4.0微米之间。大约50%的太阳辐射在区(波长0.4~0.76微米),7%在紫外光谱区(波长&0.4微米),43%在红外光谱区(波长&0.76微米),最大能量在波长 0.475微米处。由于太阳辐射波长较地面和波长(约3~120微米)小得多,所以通常又称太阳辐射为,称地面和大气辐射为。太阳活动和的变化等会引起地球大气上界太阳辐射的变化。强烈的太阳辐射风暴太阳辐射通过大气,一部分到达地面,称为直接太阳辐射;另一部分为大气的分子、大气中的微尘、水汽等吸收、散射和反射。被散射的太阳辐射一部分返回宇宙空间,另一部分到达地面,到达地面的这部分称为散射太阳辐射。到达地面的散射太阳辐射和直接太阳辐射之和称为总辐射。太阳辐射通过大气后,其强度和光谱分布都发生变化。到达地面的太阳辐射比大气上界小得多,在上能量分布在紫外光谱区几乎绝迹,在区减少至40%,而在红外光谱区增至60%。
在地球大气上界,北半球时,日辐射总量最大,从极地到赤道分布比较均匀;冬至时,北半球日辐射总量最小,极圈内为零,南北差异最大。南半球情况相反。春分和秋分时,日辐射总量的分布与纬度的余弦成正比。南、北回归线之间的地区,一年内日辐射总量有两次最大,年变化小。纬度愈高,日辐射总量变化愈大。
到达地表的全球年辐射总量的分布基本上成,只有在低纬度地区受到破坏。在地区,由于多云,年辐射总量并不最高。在南北半球的副热带高压带,特别是在大陆荒漠地区,年总量较大,最大值在非洲东北部。太阳辐射是能量的主要来源。太阳辐射在大气上界的分布是由地球的决定的,称此为。由天文辐射决定的气候称为。天文气候反映了的空间分布和时间变化的基本轮廓。
太阳辐射随季节变化呈现有规律的变化,形成了。
除太阳本身的变化外,天文辐射能量主要决定于、太阳高度角和昼长。
的轨道为椭圆形,太阳位于两个焦点中的一个焦点上。因此,时刻在变化。每年1月2日至5日经过,7月3日至4日经过。地球上接受到的太阳辐射的强弱与的平方成反比。强烈的太阳辐射图太阳光线与地平面的称为,它有日变化和年变化。大,则太阳辐射强。
白昼长度指从日出到日落之间的时间长度。赤道上四季白昼长度均为12小时,赤道以外昼长四季有变化,23.5°纬度的春、昼长12小时,夏至和昼长分别为14小时51分和9小时09分,到纬度66°33′出现和现象。南北半球的冬夏季节时间正好相反。
经过大气削弱之后到达地面的太阳直接辐射和之和称为。就全球平均而言,太阳总辐射只占到达大气上界太阳辐射的45%。总辐射量随纬度升高而减小,随高度升高而增大。一天内中午前后最大,夜间为0;一年内夏大冬小。
在可见光线(0.4~0.76μm)、红外线(&0.76μm)和紫外线(&0.4μm)分别占50%、43%和7%,即集中于短波波段,故将太阳辐射称为短波辐射。
是评定户外无遮蔽使用和储存的设备经受太阳辐射热和光学效应的能力。
太阳辐射试验标准:
GJB 150.7-86 军用设备方法 太阳辐射试验
GB 9 电工电子产品条件 太阳辐射与温度
GB/T 5 电工第2部分:试验方法 试验Sa:模拟地面上的太阳辐射
本世纪初能进行太阳辐射试验试验的实验室非常少,就环境可靠性与电磁兼容试验服务中心,另外就和广州各有一家。强烈的太阳辐射图
是由于地球自转而产生的,而季节是由于地球的自转轴与地球围绕太阳公转的轨道的转轴呈23°27′的夹角而产生的。地球每天绕着通过它本身的“” 自西向东自转一周。每转一周为一昼夜,所以地球每小时自转15°。地球除自转外还循偏心率很小的椭圆轨道每年绕运行一周。轴与公转轨道面的始终成23.5°。地球公转时自转轴的方向不变,总是指向地球的。因此地球处于运行轨道的不同位置时,投射到地球上的方向也就不同,于是形成了地球上的四季变化(见下图)。每天中午时分,太阳的高度总是最高。在热带低纬度地区(即在赤道南北23°27′之间的地区),一年中太阳有两次垂直入射,在较高纬度地区,太阳总是靠近赤道方向。在北极和(在南北半球大于90°~23°27′),冬季太阳低于地平线的时间长,而夏季则高于地平线的时间长。
由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距的距离的平方成反比,这意味着地球大气上方的会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球外的太阳辐射强度几乎是一个常数。因此人们就采用所谓 “太阳常数”来描述地球上方的太阳辐射强度。它是指平均时,在地球大气层垂直于太阳辐射的单位表面积上所接受的太阳。通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于的变化所引起太阳辐射强度的变化不超过上3.4%。天文辐射的时空变化特点
①全年以获得的辐射最多,极地最少。这种热量不均匀分布,必然导致地表各纬度的气温产生差异,在地球表面出现热带、温带和;
②天文辐射夏大冬小,它导致夏季温高冬季温低。天文辐射大气对太阳辐射的削弱作用包括大气对太阳辐射的吸收、散射和反射。太阳辐射经过整层大气时,0.29μm以下的紫外线几乎全部被吸收,在区大气吸收很少。在红外区有很强的吸收带。大气中吸收太阳辐射的物质主要有氧、臭氧、水汽和,其次有、、一氧化二氮和尘埃等。云层能强烈吸收和散射太阳辐射,同时还强烈吸收地面反射的太阳辐射。云的平均反射率为0.50~0.55。地面辐射
地球表面在吸收太阳辐射的同时,又将其中的大部分能量以辐射的方式传送给。地表面这种以其本身的热量日夜不停地向外放射辐射的方式,称为。太阳能的波长由于比太阳低得多(地表面平均温度约为300K),因而,地面辐射的主要集中在1~30微米之间,其最大辐射的平均波长为10微米,属红外区间,与太阳短波辐射相比,称为地面长波辐射。
地面的辐射能力,主要决定于地面本身的温度。由于辐射能力随辐射体温度的增高而增强,所以,白天,较高,地面辐射较强;夜间,地面温度较低,地面辐射较弱。
地面的辐射是长波辐射,除部分透过大气奔向宇宙外,大部分被大气中水汽和二氧化碳所吸收,其中水汽对长波辐射的吸收更为显著。因此,大气,尤其是中的大气,主要靠吸收地面辐射而增热。太阳照射到地平面上的辐射或称“日射”由两部分组成——直达日射和漫射日射。太阳辐射穿过大气层而到达地面时,由于大气中空气分子、水蒸气和尘埃等对太阳辐射的吸收、和,不仅使辐射强度减弱,还会改变辐射的方向和辐射的光谱分布。因此实际到达地面的太阳辐射通常是由直射和漫射两部分组成。直射是指直接来自太阳其辐射方向不发生改变的辐射;漫射则是被和散射后方向发生了改变的太阳辐射,它由三部分组成:太阳周围的散射 (太阳表面周围的天空亮光),散射(地平圈周围的天空亮光 或暗光),及其他的天空散射辐射。另外,非水平面也接收来自地面的。直达日射、漫射日射和反射日射的总和即为总日射或环球日射。可以依靠透镜或反射器来聚焦直达日射。如果聚光率很高, 就可获得高,但却损耗了漫射日射。如果聚光率较低,也可以对部分太阳周围的漫射日射进行聚光。漫射日射的变化范围很大,当天空晴朗无云时,漫射日射为总日射的10%。但当天空 乌云密布见不到太阳时,总日射则等于漫射日射。因此聚式收集 器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但当地面有冰雪覆盖时,垂直面上的反射日射可达总日射的40%。
到达地面的太阳辐射主要受大气层厚度的影响。大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。显然太阳辐射穿过大气层的路径长短与太阳辐射的 方向有关。A为地球上的一点,当太阳在天顶位置S时,太阳辐射穿过大气层到达A点的路径为OA。城阳位于S点时,其穿过大气层到达A点的路径则为0A。 O,A与 OA之比就称之为“”。它表示太阳辐射穿过地球大气的路径与太阳在天顶方向垂直入射时的路径之比,通常以符号m表示,并设定标准大气压和O℃时海平面上太阳垂直入射时,大气质量m=1。式中,h为太阳的高度角。显然地球上不同地区、不同季节、不同气象条件下到达地面的太阳辐射强度都是不相同的。
通常根据各地的和情况已将到达地面的太阳辐射强度制成各种可供工程使用的图表,它们不但对太阳能利用,而且对建筑物的采暖、设计也是至关重要的数据。太阳能的波长
太阳能的分布可以用一个黑体辐射来模拟,黑体的温度为5800K。太阳能波长分布在、可见光和。这些波段受的影响各不相同。的大部分可到达地面,但是上层大气中的臭氧却吸收了大部分紫外光辐射。宇宙微波背景辐射由于变薄,特别是和北极地区,到达地面的紫外光辐射越来越多。入射的红外光辐射,有一部分被二氧化碳、水蒸气和其他吸收,而在夜间来自地球表面的较长波长的红外辐射大部分则传到了外空。这些温室气体在上层大气中的积累,可能会使大气吸收能力增加,从而导致全球气候变暖和变得多云。虽然臭氧减少对的影响甚微,但可能会增大散射辐射,并可能严重影响太阳能集热器的作用。每日天文
表示太阳辐射强弱的,称为太阳辐射强度。单位是焦耳/厘米2·分,即在单位时间内垂直投射到单位面积上的太阳辐射能量。红外辐射的影响大气上界的太阳辐射强度取决于太阳的高度角、和。太阳高度角愈大,太阳辐射强度愈大。因为同一束光线,直射时,照射面积最小,单位面积所获得的太阳辐射则多;反之,斜射时,照射面积大,单位面积上获得的太阳辐射则少。
太阳高度角因时、因地而异。一日之中,正午大于早晚;夏季大于冬季;低纬地区大于高纬度地区。是指地球环绕太阳公转时,由于公转轨道呈椭圆形,日地之间的距离则不断改变。
地球上获得的太阳辐射强度与日地距离的平方呈反比。地球位于近日点时,获得太阳辐射大于远日点。
据研究,1月初地球通过近日点时,地表单位面积上获得的太阳辐射比7月初通过远日点时多7%。
太阳辐射强度与日照时间成正比。日照时间的长短,随纬度和季节而变化。宇宙微波背景辐射
大气吸收地面的同时,又以辐射的方式向外放射能量。大气这种向外放射的方式,称为。由于大气本身的温度也低,放射的辐射能的波长较长,故也称为辐射。
大气辐射的方向既有向上的,也有向下的。大气辐射中向下的那一部分,刚好和地面辐射的方向相反,所以称为。大气逆辐射是地面获得热量的重要。由于大气逆辐射的存在,使地面实际损失的热量比地面以长波辐射放出的热量少一些,大气的这种保温作用称为大气的温室效应。这种大气的保温作用使近地表的气温提高了约18℃。月球则因为没有象地球这样的大气,因而,致使它表面的温度剧烈,白天可达127℃,夜间可降至-183℃。红外辐射的影响
地面和大气之间以辐射的方式进行着的交换,大气对地面起着保温作用。这种作用可用(F0)表示:F0=Fg-δEA太阳辐射地面有效辐射就是地面辐射和地面所吸收的大气逆辐射(δEA)之间的差值。通常,地面温度高于大气温度,所以地面辐射要比大气逆辐射强。
地面有效辐射的强弱随地面温度、空气温度、空气及云况而变化。根据辐射强度的关系,地面温度增高时,地面辐射增强,如其它条件(温度、云况等)不变,则地面有效辐射增大。 高时,大气逆辐射增强,如其它条件不变,则地面有效辐射减小。 空气中含有水汽和水汽凝结物较多,则因水汽放射长波辐射的能力比较强,使大气逆辐射增强,从而也使地面有效辐射减弱。 天空中有云,特别是有浓密的低云存在,大气逆辐射更强,使地面有效辐射减弱得更多。所以,有云的夜晚通常要比无云的夜晚暖和一些。云被的这种作用,我们也称为云被的保温效应。人造烟幕所以能防御霜冻,其道理也在于此。 太阳辐射-辐射作用 太阳辐射太阳源源不断地以电磁波的形式向四周放射能量就称为太阳辐射。自然界中的物体温度越高,其辐射波的波长就越短,由于太阳表面的温度很高,大约是6000K,所以太阳辐射以为主,而且巨大。太阳每秒钟损失400万吨的质量,变为能量射向宇宙空间,虽然地球可以捕捉到的能量只有其22亿分之一,但每分钟仍可以得到相当于4亿吨烟煤的热量,所以说太阳辐射对地球和人类的影响是非常大的,太阳在50亿年的漫长时间中只消耗了0.03%的质量,我们看见的太阳正值稳定、旺盛的中年期,不必担心太阳的寿命,关于地球即将毁灭的谣传显然是谬论。到达地球上的太阳辐射能量只有太阳总辐射能量的很小一部分,但它的作用却是相当大的。
其一,对地理环境的影响。直接的作用如岩石受到温度的变化影响而产生风化。间接作用,地球上的大气、水、生物是地理环境要素,他们本身的发展变化以及各要素之间的相互联系,大部分是在太阳的驱动中完成的。地球表面划分为五带。为什么要划分五带呢?因为地球表面各个地方的纬度不同,不同纬度地带获得的太阳热量是不一样的。如热带一年中太阳可以直射,获得的热量最多;寒带太阳高度很低,并且有长时间的极夜,所以获得的热量最少。也就是因为太阳辐射具有纬度差异导致了各地获得的热量也有差异。但是在热量盈余的地方比如赤道,温度并没有越来越高;热量亏损的地方,比如,温度也没有越来越低,而是保持相对稳定。对于整个地表来说,热量应该是平衡的,因而热量多余和热量不足的地方,要发生热输送。 其二,太阳辐射为我们的生产和生活提供。人们对太阳辐射作用最直接的感受来自于它是人们生产和生活的主要能源。如植物的生长光和热,晾晒衣服需要阳光,工业上大量使用的煤、石油等化石燃料是太阳能转化来的,被称为“储存起来的太阳能”。还有太阳灶、、太阳能干燥器、太阳房、太阳能发电、太阳能电池等。除直接使用的太阳能外,地球上的水能、风能也来源于太阳。的省会拉萨有一别称,号称“”。为什么叫这个名称呢?因为西藏自治区位于上,地势较高,太阳光到达地表的路程短,空气稀薄,天空中云量少,损失少,所以太阳辐射强,时间长,称为“日光城”。 直辖市有个别称,有的“雾都”之称。为什么这个地方一年中多雾呢?这个地方海拔较低,受地形的影响,使得水汽积聚不易上升,使水汽增多,而不可能越过;只能影响四川盆地,故带来大量水汽,并且距海较近,所以一年中阴雨天多,天空中经常阴云密布,所以光照少,太阳辐射能贫乏。所以人们常用“蜀犬吠日”来形容四川盆地的气候特色。除此之外,光作用在物体上的力称为压力。太阳辐射的压力能将一些东西吹出,也能使一些东西掉到太阳上。我们来研究一个太阳附近的。该粒子受到太阳辐射压力正比于粒子的截面积。作用在粒子上的重力正比于它的质量,质量正比于它的体积。如果粒子的线度为X它的截面积正比于X^2,而体积正比于X^3;那么只要粒子足够小,X^2、X^3之比可任意大。当X=1单位时,X^2=1单位^2,X^3=1单位^3;而当X=0.1单位时,X2=0.01单位^2,X3=0.001单位^3。所以当X足够小时,太阳辐射压力可以超过,这就是彗星尾巴总背向太阳的原因。
假设重力大于辐射的压力,粒子被束缚在太阳系中,当粒子绕太阳运动时,太阳光就像下雨一样洒在粒子上。(如果轨道是圆的,太阳光照射方向垂直于粒子的)。但是从粒子角度看,对于一个运动的粒子,太阳光是从前方辐射来的(天文学家称之为“”)。所以,辐射压力就有一个和粒子轨道相反的分量。作用虽小,却持续不断,粒子轨道运动速度减小,导致它螺旋式的落到太阳上去。这就是波印延——罗伯逊效应。
而它,在太阳系中起到了吸尘器的作用。这就使得太阳系的质量是一定的,不会减少,不会增加。粒子的线度与体积表面积关系
新手上路我有疑问投诉建议参考资料 查看地球历史_百度百科
关闭特色百科用户权威合作手机百科
收藏 查看&地球历史
150亿年前宇宙的诞生奠定了地球产生的物质基础。地球作为一个行星起源于46亿年以前的原始。此后,地球系统由简单到复杂,各个组成部分既相互联系又相互影响。地球系统的运动及运动带来的形貌变迁、生命现象和生命活动共同构成了地球的历史。[1]
星云说所解释的太阳系的形成关于的形成,一类认为太阳系是一次激烈的偶然突变而产生的,即灾变说观点;另一类则认为太阳系是有条不紊地逐渐演变成的,即演化说观点。[2]
1755年,德国哲学家根据的万有引力原理,提出一个太阳系形成的假说,认为太阳系中的太阳、行星和卫星等是由星云——一种稀薄的云雾状微粒物质逐渐演化形成的。1796年,法国天文学家也提出了与康德类似的,后人常把两者合起来,统称“康德一拉普拉斯星云说”。这个假说在19世纪的大部分时间内占统治地位。[2]
星云说认为:的形成是银河弥漫的原始星云的某一个球状碎片,在自身引力的作用下不断收缩,产生旋涡,旋涡使星云碎裂成大量碎片,每个碎片又逐渐转化为恒星。太阳就是其中之一,它也不断收缩、旋转,在长期的运动中形成原始太阳。周围的物体不断聚合、碰撞,越转越大,就形成了今天的八大行星。行星周围的物质,也是这样渐渐形成了卫星。这就是太阳系形成的一个主要假说。[2]
认为,地球和整个宇宙都是依神或上帝的意思创造出来的。18世纪爱尔兰一个大主教公开宣称:“地球是纪元前日一个星期天的上午9时整被上帝创造出来的。”在中国古代,人们认为远古的时候还没有天地,宇宙间只有一团气,在一万八千年前,有位开天辟地,才有了日月星辰和大地。[2]
康德和拉普拉斯他们认为太阳系是由一个庞大的旋转着的原始星云形成的。原始星云是由气体和固体微粒组成,它在自身引力作用下不断收缩。星云体中的大部分物质聚集成质量很大的原始太阳。[2]
与此同时,环绕在原始太阳周围的稀疏物质微粒旋转的加快,便向原始太阳的赤道面集中,密度逐渐增大,在物质微粒间相互碰撞和吸引的作用下渐渐形成团快,大团快再吸引小团快就形成了行星。行星周围的物质按同样的过程形成了卫星。这就是康德——拉普拉斯星云说。[2]
关于地球和太阳系起源还有许多假说,如碰撞说、潮汐说、大爆炸宇宙说等等。自20世纪50年代以来,这些假说受到越来越多的人质疑,星云说又跃居统治地位。国内外的许多天文学家对地球和太阳系的起源不仅进行了一般理论上的定性分析,还定量地、较详细论述了行星的形成过程,他们都认为地球和太阳系的起源是原始星云演化的结果。[2]
中国天文学家认为,在50亿年之前,宇宙中有一个比太阳大几倍的大星云。这个大星云一方面在万有引力作用下逐渐收缩,另外在星云内部出现许多湍涡流。于是大星云逐渐碎裂为许多小星云,其中之一就是太阳系前身,称之为“原始星云”,也叫“太阳星云”。由于原始星云是在湍涡流中形成的,因此它一开始就不停地旋转。[2]
原始星云在万有引力作用下继续收缩,同时旋转加快,形状变得越来越扁,逐渐在赤道面上形成一个“星云盘”。组成星云盘的物质可分为“土物质”、“水物质”、“气物质”。这些物质在万有引力作用下,又不断收缩和聚集,形成许多“星子”。星子又不断吸积、吞并,中心部分形成原始太阳,在原始太阳周围形成了“行星胎”。原始太阳和行星胎进一步演化,而形成太阳和九大行星,进而形成整个太阳系。[2]对地球起源和演化的问题进行系统的科学研究始于十八世纪中叶,至今已经提出过多种学说。一般认为地球作为一个行星,起源于46亿年以前的原始太阳星云。地球和其他行星一样,经历了吸积、碰撞这样一些共同的物理演化过程。[3]
形成原始地球的物质主要是星云盘的原始物质,其组成主要是氢和氦,它们约占总质量的98%。此外,还有固体尘埃和太阳早期收缩演化阶段抛出的物质。在地球的形成过程中,由于物质的分化作用,不断有轻物质随氢和氦等挥发性物质分离出来,并被太阳光压和太阳抛出的物质带到太阳系的外部,因此,只有重物质或土物质凝聚起来逐渐形成了原始的地球,并演化为今天的地球。水星、金星和火星与地球一样,由于距离太阳较近,可能有类似的形成方式,它们保留了较多的重物质;而木星、土星等外行星,由于离太阳较远,至今还保留着较多的轻物质。关于形成原始地球的方式,尽管还存在很大的推测性,但大部分研究者的看法与戴文赛先生的结论一致,即在上述星云盘形成之后,由于引力的作用和引力的不稳定性,星云盘内的物质,包括尘埃层,因碰撞吸积,形成许多原小行星或称为星子,又经过逐渐演化,聚成行星,地球亦就在其中诞生了。根据估计,地球的形成所需时间约为1千万年至1亿年,离太阳较近的行星(类地行星),形成时间较短,离太阳越远的行星,形成时间越长,甚至可达数亿年。[4]至于原始的地球到底是高温的还是低温的,科学家们也有不同的说法。从古老的地球起源学说出发,大多数人曾相信地球起初是一个熔融体,经过几十亿年的地质演化历程,至今地球仍保持着它的热量。现代研究的结果比较倾向地球低温起源的学说。地球的早期状态究竟是高温的还是低温的,目前还存在着争论。然而无论是高温起源说还是低温起源说,地球总体上经历了一个由热变冷的阶段,由于地球内部又含有热源,因此这种变冷过程是极其缓慢的,地球仍处于继续变冷的过程中。[4]
地球在刚形成时,温度比较低,并无分层结构,后来由于陨石等物质的轰击、放射性衰变致热和原始地球的重力收缩,才使地球的温度逐渐升高,最后成为粘稠的熔融状态。在炽热的火球旋转和重力作用下,地球内部的物质开始分异。较重的物质渐渐地聚集到地球的中心部位,形成地核;较轻的物质则悬浮于地球的表层,形成地壳;介于两者之间的物质则构成了地幔。这样就具备了所谓的层圈结构。[3]
在地球演化早期,原始大气都逃逸了。但随着物质的重新组合和分化,原先在地球内部的各种气体上升到地表成为新的大气层。由于地球内部温度的升高,使内部结晶水汽化。后来随着地表温度的逐渐下降,气态水经过凝结,积聚到一定程度后,又通过降雨重新落到地面,这种情况持续了很长一段时间,于是在地面上形成水圈。[3]
最原始的地壳约在40亿年前出现,而地球以其地壳出现作为界线,地壳出现之前称为天文时期,地壳出现之后则进入地质时期。[3]有关大陆的起源问题,地质和地球物理学家杜托特(A. L. Du Toit)于1937年在他的《我们漂移的大陆》一书中提出了地球上曾存在两个原始大陆的模式。如果这个模式成立,那么这两个原始大陆分别被称为劳亚古陆(Lanrasia)和冈瓦纳古陆(Gondwanaland);这实际上就象以前魏格纳等人所主张的那样,把全球大陆只拼合为一个古大陆。杜托特认为,两个原始大陆原来是在靠近地球两极处形成的,其中劳亚古陆在北,冈瓦纳古陆在南,在它们形成以后,便逐渐发生破裂,并漂移到今天大陆块体的位置。[4]
早在19世纪末,地质家学休斯(E. Suess)已认识到地球南半球各大陆的地质构造非常相似,并将其合并成一个古大陆进行研究,并称其为冈瓦纳古陆,这个名称源于印度东中部的一个标准地层区名称(Gondwana)。冈瓦纳古陆包括现今的南美洲、非洲、马达加斯加岛、阿拉伯半岛、印度半岛、斯里兰卡岛、南极洲、澳大利亚和新西兰。它们均形成于相同的地质年代,岩层中都存在同种的植物化石,被称为冈瓦纳岩石。杜托特用以证明劳亚古陆和冈瓦纳古陆的存在和漂移的主要证据,是来自地质学、古生物学和古气候学方面。根据三十多年中积累起来的资料,有力地证明冈瓦纳古陆的理论基本上是正确的。[4]
劳亚古陆是欧洲、亚洲和北美洲的结合体,这些陆块即使在现在还没有离散得很远。劳亚古陆有着很复杂的形成和演化历史,它主要由几个古老的陆块合并而成,其中包括古北美陆块、古欧洲陆块、古西伯利亚陆块和古中国陆块。在晚古生代(距今约3亿年前)这些古陆块逐步靠扰并碰撞,大致在石炭纪早中期至二叠纪(即2亿至2亿7千万年前)才逐步闭合。古地质、古气候和古生物资料表明,劳亚古陆在石炭~二叠纪时期位于中、低纬度带。在中生代以后(即最近的1-2亿年间)劳亚大陆又逐步破裂解体,从而导致北大西洋扩张形成。研究表明,全球新的造山地带的形成和分布,都是劳亚古陆和冈瓦纳古陆破裂和漂移的构造结果。在这过程中,大陆岩块的不均匀向西运动和离极运动的规律十分明显。总的看来,劳亚古陆曾位于北半球的中高纬度带,冈瓦纳古陆则曾一度位于南半球的南极附近;这两个大陆之间由被称为古地中海(也称为特提斯地槽)的区域所分隔开。[4]
在杜托特(1937年)提出劳亚古陆与冈瓦纳古陆理论之前,魏格纳(A.L.Wegener)早在1912年曾提出了地球上曾只有一个原始大陆存在的理论,称为联合古陆。魏格纳认为,它是在石炭纪时期(距今约2.2亿-2.7亿年前)形成的。魏格纳把联合古陆作为他描述大陆漂移的出发点。然而根据人们现在的认识,魏格纳所提出的联合古陆决不是一个原始的大陆。虽然仍有很大一部分人赞同联合古陆观点,但他们所作出的古大陆复原图与魏格纳所提出的复原图相比,已存在很大的差别,相反倒有些接近杜托特的两个古大陆分布的理论。[4]
最近2亿年以来的大陆漂移和板块运动,已得到了确切证明和广泛的承认。然而有人推测,板块运动很可能早在30亿年前就已经开始了,而且不同地质时期的板块运动速度是不同的,大陆之间曾屡次碰撞和拼合,以及反复破裂和分离。大陆岩块的多次碰撞形成了褶皱山脉,并连接在一起形成新的大陆,而由大洋底扩张形成新的大洋盆地。因此,要准确复原出大陆在2亿多年前所谓的&漂移前的漂移&是十分困难的。地球的年龄已有46亿年历史,目前已经知道地球上最古老的岩石年龄为37亿年,并且分布的面积相当小。这样,从46亿年到37亿年间,约有9亿年的间隔完全缺失地质资料。此外,地球上25亿年前的地质记录也非常有限,这对研究地球早期的历史状况带来不少困难。[4]有关大洋的起源和演化研究从本世纪初才开始,在此之前一般认为大洋盆地是地球表面上永存的形态,也即大洋盆地自从贮水形成以来,其位置和分布格局是固定的。随着地球科学的发展,特别是本世纪初以魏格纳为首的大陆漂移这一革命性的学说的提出,对自最近的2亿多年以来大洋的起源和演化有了突破性的认识。[4]
对于大陆漂移学说,并非一开始就得到许多人支持的,因为当时对引起大陆漂移的机制,即力源问题并没有很好解决。1931年,霍姆斯等人提出了地幔对流学说,用于解释大陆漂移的力源,然而这个观点在当时很少受到人们的注意。19世纪后期,有人建立了地球收缩的全球构造学说,用于解释地球上为什么会有如此大规模的造山运动。然而,本世纪50年代以后,随着全球性大洋中裂谷的巨大拉张性证据的发现,收缩学说被普遍放弃了,与此同时,地球膨胀学说很快流行起来。膨胀说认为,地球开始时很小,直径是现今地球的一半。由于地球大幅度膨胀,原始地壳裂开成为现在的大陆,裂开的地方经过不断发展成为现代的大洋盆地。并且,由于地球的大幅度膨胀引起的所谓大陆漂移,表明大陆块基本上是停留在原地的,即各大陆之间和大陆相对于地幔之间并没有发生过显著的移动。由于膨胀说无法解释大陆地壳上广泛发育的褶皱山脉构造特征是怎么形成的,霍姆斯等人的地幔对流说很快再次被重视。60年代初,随着洋底探测资料的迅速积累,赫斯(H. H. Hess)和迪茨(R. S. Dietz)首先把地幔对流方案发展为海底扩张的学说。赫斯在1962年发表了《大洋盆地的历史》一文,提出了大洋起源的新观点,即海底扩张理论。赫斯认为洋底的主要构造就是由地幔对流作用的直接表现。海底扩张理论证明,大陆和洋底是在对流着的地幔上被动地移动着,而不像早期的大陆漂移说所主张的大陆在洋底上主动漂移。海底扩张理论提出后不久,一些别的洋底观测结果,诸如洋底地壳构造、地磁、地震震源和地热流量分布等对这个理论提供了有力证据。这种情况下,使得大部分的学者都转向了关于海底扩张的研究。现在已经普遍确认,可以用海底扩张和板块运动理论解释大洋起源和演化,大洋盆地的固定论看来是过时了。海底扩张和板块构造学说对大洋的起源和演化的理论解释的基础都是地幔对流说。[4]
现代研究证实,大洋最初是在大陆内部孕育的,并开始于大陆岩石圈中的裂谷。大陆在裂谷处破裂并相互分离,从而开始产生新的大洋盆地。魏格纳曾把南大西洋两对岸的吻合作为阐述大陆漂移说的出发点。事实上,把南美洲与非洲两大陆拼合到一起,不仅大陆边沿地形轮廓非常吻合,而且岩石类型和地质构造也可以对接起来。现已证明,大西洋在二叠纪(2亿5千万年前)时还根本不存在,据估计,形成中大西洋的大陆裂谷发生在稍后的三叠纪(约1亿6千万-1亿9千万年前)。至侏罗纪末期(约1亿2千万年前),中大西洋可能已张开达1000公里的宽度;南大西洋的张开大约开始于早白垩纪(约1亿1千万年前),而最初的裂谷发生在晚侏罗纪(约1亿3千万年前);北大西洋张开最晚,大约开始于第三纪初(约万年前),与此同时,由北大西洋裂谷向东北延展而伸入格陵兰与欧洲之间,挪威海随之张裂开。从6千万年到2千万年前,挪威海、巴芬海和北大西洋主体都在扩张,但速率和方向均有些变化。综上所述,现今的那些广阔的大洋盆地并不是从来如此,而是长期的地球运动和演化的结果。大洋由狭窄海湾到宽阔盆地的发展,是通过持续发生的大规模海底扩张过程实现的。海底扩张和板块运动的动力都是地幔对流。[4]
由于地球原始地壳自从形成以来,从来没有停止过大规模的地质构造形态的运动。因此,可以肯定地说,现在地球上大洋和陆地的形态就是过去数拾亿年来大规模地壳运动的结果。[4]古生物学家迄今发现的远古生物历史可追溯至6.35亿年前的欧巴宾海蝎,这些地球最早期生物的生活方式非常像现今的海绵,根部扎在海底,过滤水中的食物颗粒。[5]
化石记载地球上最早在大约35亿年前出现生命。有专家提出,但是地球上的生命是如何出现的仍是科学界未解决的谜题之一。
查尔斯·达尔文根据1871年的推测,早期生命可能开始于一个温暖的小池塘中,但是另外一些科学家则认为早期生命可能存在于矿产资源较为丰富的水域环境中,比如温度较高的热液喷涌,但是最近一组科学家提出另一种理论,认为生命可能起源于非常寒冷的地方,一些偶发事件促进了无机环境中形成有机物质。[6]
有专家提出,随着地球逐渐冷却,简单的有机化合物(单分子物)渐渐形成,混合后形成较为复杂的混合物(聚合物)。后来,洋流把这些大个的微粒汇聚到海岸和深海温泉等“热点地区”,它们可能最终形成了首批原始细胞。[7]也有证据证明,首批细胞复制使用的是核糖核酸(RNA),而不是脱氧核糖核酸(DNA),而DNA复制是在经历了非常漫长的进化后才出现的。[7]
也有理论认为生物出现在外星球。狄更逊水母化石,发现于澳大利亚埃迪卡拉山[8]1909年,美国古生物学家、史密森学会秘书查尔斯-沃尔科特(Charles Walcott)在加拿大不列颠哥伦比亚省的伯吉斯山口发现了伯吉斯页岩石,岩石块中含有化学记录历史上许多重要动物群中已知最古老的例证。[8]
沃尔科特的研究发现为所谓的寒武纪生命大爆发(Cambrian Explosion)提供了进一步的证据。寒武纪生命大爆发被称为古生物学和地质学上的一大悬案,在寒武纪(距今约5.42亿年前至4.9亿年前)的化石记录中,地球上突然涌现出各种各样的结构复杂的动物。虽然伯吉斯页岩中以前从未记录过如此规模的复杂动物,但古生物学家对三叶虫和寒武纪其他动物的存在并不陌生,这让查尔斯-达尔文困惑不已。[8]
寒武纪生命大爆发对科学家提出的挑战是,在达尔文所处的年代及其以后多年,在寒武纪岩层以下年代更久远的岩层中,并没有发现动物化石。对于达尔文的进化论来说,这是一个极为的不安事实,因为在化石记录中,结构简单的动物形式应该在结构复杂的动物形式之前出现。[8]
在《物种起源》中,达尔文提出了这样的主张:“在这些跨度如此之大但却鲜为人知的时期,地球上遍布着活的生物。”但他坦言,“对于我们为什么没有发现这些原始时期的化石记录的问题,我不能给出一个令人满意的答案。”[8]主词条:
奥陶纪生存的部分物种奥陶纪开始于距今5亿年前。藻类变化不大,三叶虫数量仍居首位。此时其它无脊椎动物数量和种类都超过了寒武纪。最常见的有珊瑚、腕足类、腹足类、海百合和鹦鹉螺等。[9]
奥陶纪时期的地球陆地变化不大,由于水生植物不断的光合作用。空气中氧气含量进一步增加。大致比珠峰顶部的氧气还少一点,广阔的海域,繁育着大量的各门类无脊椎动物,除寒武纪业已产生的外,某些类群还得到进一步的发展,如笔石、珊瑚、腕足、海百合、苔藓虫和软体动物等。[9]主词条:、
在经历了漫长的演化之后,地球终于进入到由脊椎动物占主导地位的时期。鱼类成为当时的霸主。[10]
3.67 亿年前,巨大的流星划破夜空坠人大海,天空中电光闪闪。这时全球气候变干,温度下降。洋流以新的形式涡动,使海洋进一步降温,表层水的盐度更高,海洋中的含氧量下降到很低的水平。陨石的撞击可能还引起更多的气候变化。这一时期可能至少有3个或多至6个来自太空的巨大天体撞人海洋中,结果导致包括造礁动物、多种鱼类和腕足类等许多海洋生物绝灭。[10]
泥盆纪晚期,由于地球气候变得恶劣起来,湖沼干涸,盾皮鱼类绝种,许多种鱼也同样面临着威胁。在这漫长的年代中,总鳍鱼中的某些支很好地适应了环境,它们依靠偶鳍、内鼻孔和鳔爬上陆地寻找水源和食物,久而久之,其中的一部分逐步演化为原始两栖类动物。[10]
由于大气圈中氧气增多,在平流层形成能够吸收大部分紫外线的臭氧层,使地球表面除海水对生物起到庇护作用以外,又增加了一层保护层,从而为古生代植物的登陆创造了条件。最早的昆虫已经绝灭了,但昆虫是迄今居住在地球上的最成功的动物。它们是最早的陆生动物。热带雨林是生物最繁盛的地方,昆虫构成了其中动物和植物总重量的三分之一。坚固的外骨骼保护了小动物使其免受伤害,在干旱少雨的时候也能避免被干死。昆虫一次能产几百只,有时甚至几千只卵。即使在最危险或最恶劣的环境里卵也能够孵化长大,产生更多的昆虫。[11]
在植物和昆虫为两栖类创造好条件的4000万以后,两栖类才从水中爬上岸边,这里的植物和植食性动物提供了充足的食物。因为没有更大的动物与之竞争,两栖类迅速扩散开来。在距今3.5亿年前的泥盆纪晚期,总鳍鱼的一支已进化成原始两栖类。其中主干为迷齿类,其次为壳椎类和滑体类。[11]主词条:、
石炭纪时期,气候潮湿,因而出现了新的奇特的森林,这是陆地上最早的森林。这些森林不像今天的沼泽森林那样茂密、黑暗,它们由木贼、厚层的蕨类植物和又高又细的树木组成。新的奇怪的动物在这奇特的景观中定居下来。各种形状和大小的两栖类动物在湿润的环境中繁盛起来,体形巨大的昆虫也是如此。[12]
昆虫是最先掌握飞行技术的动物。爬行类、鸟类、哺乳类甚至鱼类都是在它们之后飞上天空的。飞行大大有利于躲避捕食者、征服新的领地和寻找新的食物来源。起初,昆虫可能跑、跳或从树上滑行下来,体型更有利于运动的昆虫常常存活下来,终于它们发育出翅膀。[12]主词条:、、、
到距今二亿五千万年至六千五百万年前,生物史称为中生代,包括了地质史的三叠纪,侏罗纪和白垩纪。中生代生物界最大的特点是继续向适应陆生生活演化,裸子植物进化出花粉管,能进行体内受精,完全摆脱对水的依赖,更能适应陆生生活,形成茂密的森林。动物界中爬行动物也迅速发展,演化出种类繁多的恐龙,成为动物界霸主,占据了海、陆、空三大生态领域。爬行动物包括大型肉食性动物,轻巧的捕猎动物,身披鳞甲、嘴巴像猪一样的植食性动物和像鳄鱼一样的食鱼动物,它们与最早的恐龙生活在一起。许多爬行动物比最早的恐龙大而且更常见,但这些爬行动物与恐龙都比最早的哺乳动物大得多;这一时期出现的哺乳动物长得都不比老鼠大。从脊椎动物的方面来说,三叠纪虽部份继承了古生代的生物成分,但更重要的新的生物类型的出现。在脊椎动物中,除新出现龟鳖类外,更为重要的是槽齿类爬行动物的出现,并从它进化出鳄类、恐龙,以及后来的翼龙、鸟类等,为地球开创一个崭新的生物局面。武氏鳄、吐鲁番鳄均为早期槽齿类代表。不过,三叠纪最具进化意义的事件要算哺乳动物的出现,它是从一支基底爬行动物进化来的。当时它虽还弱小,但进步的构造特征预示它日后统治世界的强大的生命力。肯氏兽类是爬行动物向哺乳动物进行过程中的一旁枝。[13]
三叠纪早、中期植物的面貌,多为一些耐旱的类型。晚三叠世生长在沼泽中的木贼类、羊齿类相当繁茂,低丘缓坡则布有和现代相似的常绿树,如松、柏、苏铁等。盛产于古生代的主要植物群,几乎全部减绝,种子蕨大部消失,柯达树类趋于衰减。[13]
从大约3亿年前直到7000多万年以后的三叠纪时期恐龙刚刚兴起之前不久,异齿龙这样的动物是陆地上的统治者。[13]
海中的爬行类怪物:2.35 亿年前,爬行动物于三叠纪中期进入水中。它们的身体长到像鲸鱼那样巨大,并在随后的1.7亿年里统治海洋直至恐龙时代结束。最早的大型海洋爬行动物是幻龙类。它们的牙齿长而尖,适于捕捉鱼类,脚趾具蹼有助于划水。盾齿龙类生活于同一时期。这些海生爬行动物体长 1.8米,体侧具甲。盾齿龙用大而平的牙齿压碎并摄食海底贝类。它的牙齿长在颌骨边缘和口腔顶部。[13]
到了2亿年前,蛇颈龙类出现了。这些海生爬行动物尾巴短,前肢呈宽阔的桨状,大多数脖子很长。短颈的上龙类是所有蛇颈龙中最大的,体长12米,超过大型运货车。鱼龙也在这一时期出现,它长得更大,体长 15米。它们在9000万年前谜一样地消失了。同样大小的沧龙是凶猛的海生爬行动物,以鱼为食,它们则存活到 6500万年前恐龙时代结束。[13]霸王龙侏罗纪是恐龙的鼎盛时期。当时除陆上的恐龙,水中的鱼龙外,翼龙和鸟类也相继出现了。这样,脊椎动物便首次占据了陆、海、空三大生态领域。侏罗纪的龟类已至繁盛,中国龟、天府龟是其当时代表。恐龙主宰大地。在超过5500万年的时间内,它们发展成为植食性和肉食性恐龙,小的像鸡那么大,大的像座高楼。同时,地球上单一的大陆分解为两个大陆,植物和气候变得更加多样。但地球上仍然很温暖,而且没有草或开花植物。[14]
恐龙时代的鸟类化石稀少,但始祖鸟显示出许多肉食性恐龙的特征,因而大多数科学家认为它是由恐龙进化而来的。[14]白垩纪是中生代最后一个时期,恐龙仍繁盛,并进化出恐龙的最后一支―角龙。但到白垩纪末期,由于环境的突变,所有恐龙,以及鱼龙和翼龙,统统都绝减了。称雄一时的爬行动物至此一蹶不振,退出历史舞台,闯过此关而且残留至今的只鳄类、龟鳖类、蛇和晰蜴等少数几类。鸟类是脊椎动物向空中发展取得最大成功的一支。鸟类起源于爬行动物的槽齿类。不少人已更进一步认为鸟类是恐龙的后裔。世界是最早的鸟类是发现于德国的始祖鸟。迄今为止只发现七件骨骼标本。这一鸟类除身披羽毛外,其余特微和一些小型恐龙十分相似。因此,这一距今一亿四千万年(晚侏罗世纪的鸟类也是最原始的鸟类。早白垩世(距今一亿三千万年左右)是鸟类首次蓬勃发展的时期。中国辽宁发现的鸟类化石是这一时期世界是最为丰富、保存最完整、种类最多的鸟类。这一时期,鸟类个头较小,飞行能力及树栖能力皆始祖鸟大大提高。[15]
白垩纪是恐龙生活的最后一个纪,也是地球景观发生巨大变化的时期。在海面达到创纪录的高度后,各个大陆的形状与今天的非常相似。开花植物出现,许多昆虫——从蜜蜂到蚂蚁——也出现了。巨型蜥蜴与巨大的海龟一起在海洋里游泳。在空中,翼龙展开双翼达12米。陆地上,恐龙占统治地位,其大小和形状超出了以前的所有类型。植食性恐龙长到100吨重,肉食性恐龙的体长达到12米以上。[15]
哺乳动物在恐龙时代自始至终都存在。数百万年中,它们都是原始而渺小的。其中一些可能产蛋。白垩纪时哺乳动物开始发生变化。[15]
将近7000 万年前,哺乳动物分化成两个主要类群。一类是有胎盘类哺乳动物,它们的初生幼崽发育完好。另一个哺乳动物类群是有袋类,它们生出很小的幼崽,幼崽爬进母亲的育儿袋中吃奶。这两个类群今天仍然存在,但它们的早期种类很久以前就绝灭了。恐龙时代晚期的有胎盘类哺乳动物中包括了最早的灵长类。猴子、类人猿和人是今天的灵长类。但最早的灵长类是老鼠一样大小的动物,如珀加图里猴。科学家可以根据臼齿分辨出灵长类,这些牙齿看起来很像现代灵长类后部的牙齿。珀加图里猴是最早的灵长类之一。长约10厘米,可能以昆虫为食。[15]主词条:
6500万年前,恐龙从陆地上消失了,海洋和空中的许多其他类型的动物也消失了,包括巨型海生爬行动物和会飞的爬行动物。科学家提出许多种理论来解释恐龙的灭绝。较为流行的结论是:一颗巨大的小行星撞击了墨西哥湾。这次撞击产生的巨大海啸横扫地球,并引发多处大火。烟尘遮天蔽日,使天空变暗,并阻挡阳光,使地球变冷。火山爆发也可能产生同样的结果。许多动物无法适应天气变化。但是,鸟类、哺乳动物、鳄鱼以及许多其他动物幸存下来。[15]
这一假说的证据还来自于在世界各地发现的6500万年前的沉积物中存在的一种氨基酸。这种氨基酸含有大量的铱元素,大量地存在于某些天体里,在地球上却根本不应该存在。这层富含铱元素的地层在北美洲、欧洲和澳大利亚的许多地区都被先后发现,在我国西藏的冈巴地区几年前也发现了这层含铱层。有的科学家认为,这次爆炸使所有恐龙都灭绝了。但是也有一些科学家认为,只有 70%的恐龙在当时灭绝,其它的一些恐龙种类则勉强地躲过了劫难,可是在随后的几百万年里又逐渐绝灭了。这后一种说法并不是没有道理,因为在6500万年前的这次事件以后形成的地层里,仍有一些恐龙骨骼被发现。例如,美国新墨西哥洲6000万年前上下的地层中就曾经发现了恐龙的残骸。在阿拉斯加新生代的冻土带里,也发现过三角龙的化石。这些现象似乎说明,在这次小行星撞击地球引起的大爆炸以后,仍然有一些恐龙挣扎着生活了几百万年的时间,最后才因为不适应新的气候和新的环境而最终相继灭绝。[16]第三纪(Tertiary period)始于距今 6500 万年,延至距今约 180 万年。第三纪的重要生物类别是被子植物、哺乳动物、鸟类、真骨鱼类、双壳类、腹足类、有孔虫等,这与中生代的生物界面貌迥异,标志着“现代生物时代”的来临。第三纪时被子植物极度繁盛。除松柏类尚占重要地位外其余的裸子植物均趋衰退。蕨类植物也大大减少且分布多限于温暖地区。第三纪的植物有明显的分区现象,地层中还有许多微体水生藻类化石。脊椎动物的变化主要表现在爬行动物的衰亡,哺乳类、鸟类和真骨鱼类取而代之,兴起且高度繁盛。第三纪的早期,仍生活着古老、原始的哺乳动物;到了中期,现代哺乳动物的祖先先后出现,逐渐代替了古老、原始的哺乳动物;第三纪晚期,现代哺乳动物群逐渐形成,更是偶蹄类和长鼻类繁盛的时期。尤其马的进化很快。[17]
中生代末,海生无脊椎动物有明显的兴衰现象。盛极一时的菊石类完全绝灭,箭石类极度衰退,而双壳类、腹足类、有孔虫、六射珊瑚、海胆、苔藓虫等则进一步繁盛。第三纪出现的有孔虫分布广泛、进化迅速,对于海相第三系的划分与对比很有意义。此外,它们的生态分带已应用于确定沉积盆地水深的变化。原生动物中的放射虫在第三纪也十分繁盛,在深海研究中占有突出地位。双壳类在第三纪有很大发展,腹足类在第三纪进入极盛期。[17]
陆生的无脊椎动物以双壳类、腹足类、介形类为主,可以根据它们不同时期组合面貌的变化,进行陆相第三系的划分。[17]主词条:早期人类生活想象图[18]约5000多万年前,灵长类动物呈辐射状演化,从低等灵长类动物原猴类中又分化出高等灵长类动物。
3300万-2400万年前,产生了猿。埃及发现的最早的古猿和已经具有类人猿的一些性状;稍晚后的古猿化石还有分布范围较广,在亚洲、欧洲、非洲均有所发现。东非的已经是一种猿,是人类和非洲猿的祖先。 以上古猿均为林栖动物,四肢行走,属于攀树的猿群。现存的猿中包括两个类群,(大猩猩、黑猩猩和人类)和亚洲猿(长臂猿和猩猩),这两个类群之间存在着明显的界限,显然,二者的分化发生在1200万年-1500万年前。
在约1000万年前至约380或200多万年前,有两种过渡时期的化石代表。一种是,一种是。
最初的在人类学中被称为“完全形成的人”。我国古人类学者把这一进程分作和两大阶段,每段再分为早晚两个时期。250万年前,热带非洲的气候开始恶化,冰期从北半球袭来。随着气候越来越干旱,稀树大草原开始逐渐变为灌木大草原,大多数南方古猿消失。有两个例外,一种情况是,某些地区稀树大草原保留下来,那里的南方古猿得以生存下去,比如南方古猿能人种和两种粗壮种。更重要的一种情况是某些南方古猿群体利用自己的聪明才智发明了一些成功的防卫机制而生存下来,对于这些防卫机制人们只能去猜测,可能会扔石头,或者使用有木头和其他植物材料制成的原始武器,有可能露宿野外篝火旁。事实上正是这些南方古猿的后裔生存下来并繁荣起来,成人属,从树上栖息双足行走转变为陆地生活并双足行走。主词条:、、、、、、、、、黑人民权运动、、
新手上路我有疑问投诉建议参考资料 查看}

我要回帖

更多关于 太阳光多久到地球 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信