Armendáriz Picón 汉语译法语怎么译

科学家计算寒冷暗物质移动速度极限(图)
来源:凤凰科技日 07:27
无处不在的线索。  凤凰科技讯 北京时间10月9日消息, 新科学家报道,如果暗物质粒子从未形成现在这样的团块,那么它们将在太空里缓慢的移动,速度不超过54米每秒。这项发现是“寒冷暗物质”特征的少数已知值之一,暗物质被认为是宇宙里最常见的物质类型。  基于恒星和星系的运动,我们知道宇宙充满了各种我们看不见的物质。天文学家计算称这种不可见的暗物质组成了宇宙物质的80%,现在大部分暗物质都聚成一团形成环绕星系的巨大光环。  尽管我们能够看见暗物质的引力效应,但它们并不会与正常物质发生相互作用,因此我们对它的特性的了解非常有限。目前最好的理论认为大多数暗物质应该是“寒冷的”,这意味着它是由移动速度低于光速的粒子组成。  据称,随着早期宇宙热汤逐渐冷却,自由游离的暗物质粒子相互合并,它们的引力开始拖拽气体尘埃形成第一批恒星和星系。暗物质粒子移动的速度影响了它们形成团块的难易程度,而速度较快的物质将无法形成我们今天观测到的大规模结构。  现在,美国纽约锡拉丘兹大学的克里斯蒂安·阿门德里兹-皮肯(Cristian Armendáriz-Picón)和贾亚斯·尼拉卡塔(Jayanth Neelakanta)首次计算出未成团块的暗物质粒子需要多快的速度才能以实现在宇宙里随机飘荡。研究小组研究了宇宙历史不同时期物质是如何分布的。对宇宙最早产生的光的光谱分析以及星系团的调查,研究人员分别测定了较小规模和较大规模里物质的分步。他们计算出早期宇宙里暗物质的移动速度至少需要多快才能创造出现在可观察到的大规模结构,然后推测如果这些粒子没有合并成块,它们现在移动的速度应该是多快。
相关新闻->->->还没有开通你的开心账户?使用其他账号登录:
诺奖得主发现“时间晶体” 永动机或可真实存在
物理学家探索了这样一个概念:冷态的物质最终可以形成重复的模式。
“永动机”这个词–从十九世界中期开始,科学家们就嘲笑这个概念。“诺贝尔物理学获奖者” Frank Wilczek似乎和这个概念无关,但是如果Wilczek关于对称性和时间的本质的最新观点正确的话,科学家们就会提出:虽然永远都没有能量输出的,但是永动机可以真实存在。Frank Wilczek提出:物质可以形成一个“时间晶体”,它的结构可以随着一个普通的晶体进行周期性的重复,但是这种重复是发生在时间上而不是空间上。这样的晶体将会代表物质未知的一种状态,这种物质的状态可能在早期宇宙冷却,失去原始的对称性的时候出现过。
加州技术研究所的宇宙学家Sean Carroll 说:“这些论文本身就完全受人尊敬,而且毋庸置疑的正确和有趣。”
Wilczek是麻省理工学院的一名教授,因他在发展中的量子色动力学中的开创性的工作而闻名。量子色动力学解释原子核内部的粒子怎么联合在一起。他说他最新的观点是来源于两年前当他教群论的一堂课上。群论是数学的分支,用矩阵来描述基本粒子们的内在对称性和对晶体进行分类。处于平衡状态的液体或气体,是由均匀分布的粒子构成的,呈现出完美的空间对称性–它们看起来每个地方,每个方向上都一样。
在处于能量非常低或最低的时候,大多数物质不能保持对称性,而会结晶。晶体的规则几何形状缺少完整的空间对称性;结构不会处处相同。因为晶体在能量非常低的时候,它的对称性减少了,物理学家说,这些晶体出现自发对称性破坏。在许多物理领域里也发生相同的过程。一种对称性的破坏,可以由希格斯玻色子指示出来。希格斯玻色子在大型强子对撞机里被捕获,可以用来解释亚原子粒子为什么有质量。
Wilczek 说他开始思考普通的三维晶体通过增加额外的一个时间维度变成四维晶体的概念。一个时间晶体能自发破坏Wilczek所称的“对称性之母“–时间平移的对称性。时间平移对称性指的是物理规律不会依赖于时间起点的选择。一个时间晶体它可以随着时间改变,但是会持续回到它开始时的相同形态,就如一个钟的移动的指针周期性的回到它的原始位置。
与普通的钟或者其他周期性的过程不同的是,时间水晶和空间水晶一样会是最低限度的能量的一种状态。乍一看,这提出了个矛盾。时间水晶根据定义来讲,为了破坏时间平移对称性,必须随着时间改变。但是拥有最低能量的体系“通常”不能移动。如果它可以移动,那么额外的能量仍然会被输出,直到这个体系达到真正的最低能量即静止的状态。
“起先,我认为时间晶体这个概念简单,也是不可能的,”Wilczek在坦佩的亚利桑那州立大学的一个近期讲座中写到:“现在我认为这既不简单也并非不可能。”
他与Shapere 证明物质可以在静止状态下,总能量为零。他们用数学重新表达动能(0.5倍的质量乘以速度的平方)的普通定义,将动能定义为不同的,但是同样有效的值,这个值是依赖于可供选择的一个速度(例如,增加一个额外项如速度的四次方,而改变普通的动能)。
一旦启动,时间晶体不需要外在的力去保持运动而能永远运动下去。这类永动机不会违背任何已知的物理定律,因为没有起先加入的能量,也就没有任何可以从这体系中输出的能量。这类体系甚至可被用于传递信息。在体系周围的其他所有物质都消逝后,体系仍存留着。
Wilczek说,现代科技最接近时间晶体的物质是:携带电流的超导体,它在低温下运载移动的持久电流。在一根普通的超导电缆里,电流是恒定的,如果实际随着时间的改变而什么都不变的话,超导体并不符合一个真正的晶体的概念。但是如果工程师能够构建出一个波形分布的带电粒子超导体而不是均匀分布的带电粒子的超导体,那么随着电流流动,电流向前传递,这持久电流就会随着时间的改变而改变。
Armendáriz Picón说,时间晶体的概念,可以来阐明随时间不对称的自然现象怎么用对称理论来描述。它也可以用于宇宙的起源和进化。“你可以认为这些[时间]晶体是一种新形态的物质,这物质可用来解释未解的现象,比如说现阶段的宇宙加速膨胀。“
Wilczek 警示说:理论尚处于早期阶段。他在近期的一个演讲中提到,对物理学家来说,时间晶体犹如探索新大陆。但他补充道,这新大陆是不是一个新的世界,或是南极洲,时间会说明一切。
本转帖分类:&&
&&上一帖:
下一帖:&&
(%)点击发表你的观点
12-08 19:0212-08 19:0812-08 19:0812-08 19:1112-08 19:1112-08 19:1112-08 19:1312-08 19:1312-08 19:1312-08 19:15
热门转帖:
最新专题:
&2015 开心网IMMIGRATION LAWYERS AND CRIMINAL DEFENSE ATTORNEYS
Full service immigration law firm established in 1976 providing short and long term immigration solutions to employers, families and individuals in need of expert advice for immigration to the U.S. and emigration to countries outside the U.S.
Succinct Employment based immigration strategies from non-immigrant and immigrant solutions for qualified foreign national employees
Expert Immigration litigation defense for persons in removal proceedings and beyond including federal court litigation
In-depth solutions for family based immigration cases to re-unite and keep families together
Emigration solutions for companies transferring qualified employees abroad
Contact us at any of the following locations:
SAN ANTONIO HEADQUARTERS (located next to the Immigration building)
8930 Fourwinds Drive, Suite 106
San Antonio, Texas 78239
tel: 210.590.1844
fax: 210.590.1845
toll free: 1.866.690.1844
SAN ANTONIO DOWNTOWN (located in the same building as immigration court)
800 Dolorosa, Suite 100
San Antonio, TX 78207
tel: 210.354.1844
fax: 210.212.2116 toll free:
1.866.690.1844
611 South Congress, Ste. 430
Austin, TX 78704
tel: 512.222.1284
fax: 512.445.7093
toll free: 1.866.690.1844
601 Sawyer St #280
Houston, TX 77007
tel: 713.373.3765
toll free: 1.866.690.1844
SAN ANGELO *By appointment only
112 W College Avenue
San Angelo, TX 76903
1-866-690-1844
Experienced and dedicated criminal defense practice with decades of experience, providing a comprehensive review to ensure the best defense possible for all types of criminal charges
Zealous representation of both State and Federal criminal charges, including appeals
Developed expertise in the intersection of criminal and immigration lawOALib Journal期刊
费用:600人民币/ 99美元
查看量下载量
Large-Scale Structure Formation via Quantum Fluctuations and Gravitational Instability
DOI: , PP. 634-656
Keywords: ,,,
review of the status of the universe as described by the standard cosmological model
combined with the inflationary paradigm. Their key features and predictions, consistent
with the WMAP (Wilkinson Microwave Anisotropies Probe) and Planck Probe 2013 results,
provide a significant mechanism to generate the primordial gravitational waves and
the density perturbations which grow over time, and later become the large-scale
structure of the universe—from the quantum fluctuations in the early era to the
structure observed 13.7 billion later, our epoch. In the single field slow-roll
paradigm, the primordial quantum fluctuations in the inflaton field itself translate
into the curvature and density perturbations which grow over time via gravitational
instability. High density regions continuously attract more matter from the surrounding
space, the high density regions become more and more dense in time while depleting
the low density regions. At late times the highest density regions peaks collapse
into the large structure of the universe, whose gravitational instability effects
are observed in the clustering features of galaxies in the sky. Thus, the origin
of all structure in the universe probably comes from an early era where the universe
was filled with a scalar field and nothing else.
References
[]&&Weinberg, S. (1972) Gravitation and Cosmology. John Wiley & Sons, Hoboken.
[]&&Peebles, P.J.E. (1980) The Large-Scale Structure of the Universe. Princeton University Press, Princeton.
[]&&Peebles, P.J.E. (1993) Principles of Physical Cosmology. Princeton University Press, Princeton.
[]&&Padmanabhan, T. (1993) Structure Formation in the Universe. Cambridge University Press, Cambridge.
[]&&Mukhanov, V. (2005) Physical Foundations of Cosmology. Cambridge University Press, New York.
[]&&Weinberg, S. (2008) Cosmology. Oxford University Press, Oxford.
[]&&Starobinsky, A.A. (1979) Spectrum of Relict Gravitational Radiation and the Early State of the Universe. JETP Letters, 30, 682-685.
[]&&Starobinsky, A.A. (1980) A New Type of Isotropic Cosmological Model without Singularity. Physics Letters B, 91, 99-102. http://dx.doi.org/10.93(80)90670-X
[]&&Mukhanov, V. and Chibisov, G. (1981) Quantum Fluctuation and ‘Nonsingular’ Universe. JETP Letters, 33, 532-535.
[]&&Guth, A.H. (1981) Inflationary Universe: A Possible Solution to the Horizon Flatness Problems. Physical Review D, 23, 347-356. http://dx.doi.org/10.1103/PhysRevD.23.347
[]&&Chibisov, G. and Mukhanov, V. (1982) Galaxy Formation and Phonons. Monthly Notices of the Royal Astronomical Society, 200, 535-550.
[]&&Albrecht, A. and Steinhardt, P.J. (1982) Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking. Physical Review Letters, 48, . http://dx.doi.org/10.1103/PhysRevLett.48.1220
[]&&Linde, A.D. (1982) A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness Homogeneity, Isotropy and Primordial Monopole Problems. Physics Letters B, 108, 389-393. ]http://dx.doi.org/10.93(82)91219-9
[]&&Linde, A.D. (1982) Coleman-Weinberg Theory and the New Inflationary Universe Scenario. Physics Letters B, 114, 431-435. http://dx.doi.org/10.93(82)90086-7
[]&&Linde, A. (1982) Temperature Dependence of Coupling Constant and the Phase Transition in the Coleman-Weinberg Theory. Physics Letters B, 116, 340-342. http://dx.doi.org/10.93(82)90294-5
[]&&Linde, A. (1982) Scalar Field Fluctuation in the Expanding Universe and the New Inflationary Universe Scenario. Physics Letters B, 116, 335-339. http://dx.doi.org/10.93(82)90293-3
[]&&Linde, A.D. (1983) Chaotic Inflation. Physics Letters B, 129, 177-181. http://dx.doi.org/10.93(83)90837-7
[]&&Linde, A. (1985) Initial Conditions for Inflation. Physics Letters B, 162, 281-286. http://dx.doi.org/10.93(85)90923-2
[]&&Mukhanov, V. and Chibisov, G. (1985) Gravitational Instability of the Universe Filled with a Scalar Field. JETP Letters, 41, 493-496.
[]&&Goncharov, A.S., Linde, A.D. and Mukhanov, V.F. (1987) The Global Structure of the Inflationary Universe. International Journal of Modern Physics A, 2, 561-591. http://dx.doi.org/10.1X
[]&&Linde, A.D., Linde, D.A. and Mezhlumian, A. (1994) From the Big Bang Theory to the Theory of a Stationary Universe. Physical Review D, 49, . http://dx.doi.org/10.1103/PhysRevD.49.1783
[]&&Liddle, A.R. (1999) An Introduction to Cosmological Inflation. 36 p. arXiv: astro-ph
[]&&Lyth, D.H. and Riotto, A. (1999) Particle Physics Models of Inflation and the Cosmological Density Perturbation. Physics Reports, 314, 1-146. http://dx.doi.org/10.-28-8
[]&&Liddle, A. and Lyth, D. (2000) Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge.
[]&&Brandenburger, R.H. (2001) A Status Review of Inflationary Cosmology.
[]&&Guth, A.H. (2004) Inflation.
[]&&Mukhanov, V.F. (2004) CMB Quantum Fluctuations and the Predictive Power of Inflation. International Journal of Theoretical Physics, 43, 623.
[]&&Linde, A.D. (1990) Particle Physics and Inflationary Cosmology. Harwood Academic, Chur.
[]&&Acquaviva, V., Bartolo, N., Matarrese, S. and Riotto, A. (2003) Gauge-Invariant Second-Order Perturbations and Non-Gaussianity from Inflation. Nuclear Physics B, 667, 119-148. http://dx.doi.org/10.-50-9
[]&&Maldacena, J. (2003) Non-Gaussian Features of Primordial Fluctuations in Single Field Inflationary Models. Journal of High Energy Physics, .
[]&&Linde, A.D. (2008) Inflationary Cosmology. Lecture Notes in Physics, 738, 1-54.
[]&&Linde, A.D. (1991) Axions in Inflationary Cosmology. Physics Letters B, 259, 38-47. http://dx.doi.org/10.93(91)90130-I
[]&&Linde, A.D. (1994) Hybrid Inflation. Physical Review D, 49, 748-754. http://dx.doi.org/10.1103/PhysRevD.49.748
[]&&Linde, A.D. (1986) Eternally Existing Self-Reproducing Chaotic Inflationary Universe. Physics Letters B, 175, 395-400. http://dx.doi.org/10.93(86)90611-8
[]&&Linde, A. (2002) Inflation, Quantum Cosmology and the Anthropic Principle.
[]&&Kallosh, R. and Linde, A. (2003) P-Term, D-Term and F-Term Inflation. Journal of Cosmology and Astroparticle Physics, .
[]&&Linde, A. (2013) Chaotic Inflation in Supergravity and Cosmic String Production. Physical Review D, 88, Article ID 123503.
[]&&Kallosh, R. (2008) On Inflation in String Theory. Lecture Notes in Physics, 738, 119-156.
[]&&Dvali, G.R. and Tye, S.H.H. (1999) Brane Inflation. Physics Letters B, 450, 72-82.http://dx.doi.org/10.-32-X
[]&&Quevedo, F. (2002) Lectures on String/Brane Cosmology. Classical and Quantum Gravity, 19, .
[]&&Linde, A. (2006) Inflation and String Cosmology. Progress of Theoretical Physics Supplement, 163, 295-322.http://dx.doi.org/10.1143/PTPS.163.295
[]&&Veneziano, G. (1991) Scale Factor Duality For Classical and Quantum Strings. Physics Letters B, 265, 287-294. http://dx.doi.org/10.93(91)90055-U
[]&&Gasperini, M. and Veneziano, G. (1993) Pre-Big-Bang in String Cosmology. Astroparticle Physics, 1, 317-339.
[]&&Spergel, D. and Turok, N. (1992) Textures and Cosmic Structure. Scientific American, 266, 52-59.http://dx.doi.org/10.1038/scientificamerican0392-52
[]&&Nayeri, A., Brandenberger, R.H. and Vafa, C. (2006) Producing a Scale-Invariant Spectrum of Perturbations in a Hagedorn Phase of String Cosmology. Physical Review Letters, 97, Article ID: 021302.http://dx.doi.org/10.1103/PhysRevLett.97.021302
[]&&Brandenberger, R.H., Nayeri, A., Patil, S.P. and Vafa, C. (2007) Tensor Modes from a Primordial Hagedorn Phase of String Cosmology. Physical Review Letters, 98, Article ID: 231302. http://dx.doi.org/10.1103/PhysRevLett.98.231302
[]&&Brandenberger, R.H., Nayeri, A., Patil, S.P. and Vafa, C. (2007) String Gas Cosmology and Structure Formation. International Journal of Modern Physics A, 22, .
[]&&Peter, P., Pinho, E.J.C. and Pinto-Neto, N. (2007) Noninflationary Model with Scale Invariant Cosmological Perturbations. Physical Review D, 75, Article ID: 023516. http://dx.doi.org/10.1103/PhysRevD.75.023516
[]&&Khoury, J., Ovrut, B.A., Steinhardt, P.J. and Turok, N. (2001) Ekpyrotic Universe: Colliding Branes and the Origin of the Hot Big Bang. Physical Review D, 64, Article ID: 123522. http://dx.doi.org/10.1103/PhysRevD.64.123522
[]&&Steinhardt, P.J. and Turok, N. (2005) The Cyclic Model Simplified. Talk Given at Dark Matter 2004, Santa Monica, CA: 18-20 February 2004; New Astronomy Reviews, 49, 43-57.
[]&&Buchbinder, E.I., Khoury, J. and Ovrut, B.A. (2008) Non-Gaussianities in New Ekpyrotic Cosmology. Physical Review Letters, 100, Article ID: 171302.
[]&&Berera, A. (1995) Warm Inflation. Physical Review Letters, 75, . http://dx.doi.org/10.1103/PhysRevLett.75.3218
[]&&Berera, A. (1996) Thermal Properties of an Inflationary Universe. Physical Review D, 54, . http://dx.doi.org/10.1103/PhysRevD.54.2519
[]&&Enqvist, K. and Sloth, M.S. (2002) Adiabatic CMB Perturbation in Pre-Big-bang String Cosmology. Nuclear Physics B, 626, 395-409. http://dx.doi.org/10.-43-3
[]&&Lyth, D.H. and Wands, D. (2002) Generating the Curvature Perturbations without an Inflaton. Physics Letters B, 254, 5-14.
[]&&Morroi, T. and Takahashi, T. (2001) Effects of Cosmological Moduli Fields on Cosmic Microwave Background. Physics Letters B, 522, 215-221.
[]&&Maldacena, J.M. (1998) The Large N limit of Superconformal Field Theories and Supergravity. Advances in Theoretical and Mathematical Physics, 2, 231-252.
[]&&Arkani-Hamed, N., Creminelli, P., Mukohyamam, S. and Zaldarriaga, M. (2004) Ghost Inflation. Journal of Cosmology and Astroparticle Physics, 2004. http://dx.doi.org/10.16/
[]&&Bartolo, N., Komatsu, E., Matarrese, S. and Riotto, A. (2004) Non-Gaussianity from Inflation: Theory and Observations. Physics Reports, 402, 103-266.
[]&&Chen, X., Huang, M., kachru, S. and Shiu, G. (2007) Observational Signature and Non-Gaussianity of General Single Field. Journal of Cosmology and Astroparticle Physics, 2007. http://dx.doi.org/10.16/
[]&&Chen, X., Easther, R. and Lim, E.A. (2007) Large Non-Gaussianity in Single Field Inflation. Journal of Cosmology and Astroparticle Physics, 2007. http://dx.doi.org/10.16/
[]&&Armendáriz-Picón, C., Damour, T. and Mukhanov, V. (1999) K-Inflation. Physics Letters B, 458, 209-218.http://dx.doi.org/10.-03-6
[]&&Silverstein, E. and Tong, D. (2004) Scalar Speed Limits and Cosmology: Acceleration from D-Cceleration. Physical Review D, 70, Article ID: 103505. http://dx.doi.org/10.1103/PhysRevD.70.103505
[]&&Alishahiha, M., Silverstein, E. and Tong, D. (2004) DBI in the Sky: Non-Gaussianity from Inflation with a Speed Limit. Physical Review D, 70, Article ID: 123505. http://dx.doi.org/10.1103/PhysRevD.70.123505
[]&&Holman, R. and Tolley, A.J. (2008) Enhanced Non-Gaussianity from Excited Initial States. Journal of Cosmology and Astroparticle Physics, 2008. http://dx.doi.org/10.16/
[]&&Chen, X., Easther, R. and Lim, E.A. (2008) Generation and Characterization of Large NG in Single Field Inflation. Journal of Cosmology and Astroparticle Physic, 2008. http://dx.doi.org/10.16/
[]&&Bartolo, N., Matarrese, S. and Riotto, A. (2010) Non-Gaussianity and the Cosmic Microwave Background Anisotropies. Advance in Astronomy, 2010, Article ID: 157079.
[]&&Vernizzi, F. and Wands, D. (2006) Non-Gaussianity in Two Field Inflation. Journal of Cosmology and Astroparticle Physics, 2006. http://dx.doi.org/10.16/
[]&&Komatsu, E., et al. (2009) Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 180, 330-376. http://dx.doi.org/10.49/180/2/330
[]&&Komatsu, E., et al. (2011) Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. The Astrophysical Journal Supplement Series, 192, Article ID: 18. http://dx.doi.org/10.49/192/2/18
[]&&Hinshaw, G., Larson, D., Komatsu, E., et al. (2011) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results. The Astrophysical Journal Supplement Series, 208, Article ID: 19.
[]&&Planck Collaboration: Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., et al. (2013) Planck 2013 Results. XVI. Cosmological Parameters.
[]&&Planck Collaboration: Ade, P.A.R., N. Aghanim, C., Armitage-Caplan, et al. (2013) Planck 2013 Results. XXIV. Constraints on Primordial Non-Gaussianity. Submitted to Astronomy & Astrophysics.
[]&&Planck Collaboration: Ade, P.A.R., N. Aghanim, C., Armitage-Caplan, et al. (2013) Planck 2013 Results. XXII, Constraints on Inflation. Submitted to Astronomy & Astrophysics.
[]&&Bars, I., Steinhardt, P.J. and Turok, N. (2013) Cyclic Cosmology and the Metastability of the Higgs.
[]&&Brandenberger, R.H. (2011) Introduction to Early Universe Cosmology.
[]&&Brandenberger, R.H. and Martin, J. (2012) Trans-Planckian Issues for Inflationary Cosmology.
[]&&Borde, A., Guth, A. and Vilenkin, A. (2003) Inflationary Space-Time Are Not Past Complete. Physical Review Letters, 90, Article ID: 151301. http://dx.doi.org/10.1103/PhysRevLett.90.151301
[]&&Hawking, S.W. and Ellis, G.F.R. (1973) The Large Scale Structure of Space-Time. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO6
[]&&Bojowald, M. (2001) Loop Quantum Cosmology IV: Discrete Time Evolution. Classical and Quantum Gravity, 18, . http://dx.doi.org/10.81/18/6/308
[]&&Bojowald, M. (2001) Absence of a Singularity in Loop Quantum Cosmology. Physical Review Letters, 86, .http://dx.doi.org/10.1103/PhysRevLett.86.5227
[]&&Bojowald, M. (2001) Dynamical Initial Conditions in Quantum Cosmology. Physical Review Letters, 87, Article ID: 121301. http://dx.doi.org/10.1103/PhysRevLett.87.121301
[]&&Bojowald, M. (2002) Inflation from Quantum Geometry. Physical Review Letters, 89, Article ID: 261301.http://dx.doi.org/10.1103/PhysRevLett.89.261301
[]&&Bojowald, M. (2002) Quantization Ambiguities in Isotropic Quantum Geometry. Classical and Quantum Gravity, 19, . http://dx.doi.org/10.81/19/20/306
[]&&Bojowald, M. (2003) Homogeneous Loop Quantum Cosmology. Classical and Quantum Gravity, 20, .http://dx.doi.org/10.81/20/13/310
[]&&Ashtekar, A., Bojowald, M. and Lewandowski, J. (2003) Mathematical Structure of Loop Quantum Cosmology. Advances in Theoretical and Mathematical Physics, 7, 233-268.
[]&&Ashtekar, A. and Singh, P. (2011) Loop Quantum Cosmology: A Status Report. Classical and Quantum Gravity, 28, Article ID: 213001.
[]&&Agullo, I. (2013) Loop Quantum Cosmology.
[]&&Ashtekar, A., Pawlowski, T., Singh, P. and Vandersloot, K. (2007) Loop Quantum Cosmology of k = 1 FRW Models. Physical Review D, 75, Article ID: 024035.
[]&&Ashtekar, A. and Wilson-Ewing, E. (2009) Loop Quantum Cosmology of Bianchi Type II Model. Physical Review D, 80, Article ID: 123532. http://dx.doi.org/10.1103/PhysRevD.80.123532
[]&&Sen, A. (1982) Gravity as Spin System. Physical Review B, 119, 89-91. http://dx.doi.org/10.93(82)90250-7
[]&&Barbero, F. (1995) Real Ashtekar Variables for Lorentzian Signature Space-Time. Physical Review D, 51, .http://dx.doi.org/10.1103/PhysRevD.51.5507
[]&&Rovelli, C. (1997) Loop Quantum Gravity. Living Reviews in Relativity, 1, 1-74.
[]&&Rovelli, C. (2010) A New Look at Loop Quantum Gravity. Classical and Quantum Gravity, 28, Article ID: 114005.http://dx.doi.org/10.81/28/11/114005
[]&&Rovelli, C. (2011) Loop Quantum Gravity: The First 25 Years. Classical and Quantum Gravity, 28, Article ID: 153002.
[]&&Ashtekar, A. (1986) New Variables for Classical and Quantum Gravity. Physical Review Letters, 57, . http://dx.doi.org/10.1103/PhysRevLett.57.2244
[]&&Ashtekar, A. (1987) New Hamiltonian Formulation of General Relativity. Physical Review D, 36, .http://dx.doi.org/10.1103/PhysRevD.36.1587
[]&&Ashtekar, A., Kaminski, W. and Lewandowski, J. (2009) Quantum Field Theory on a Cosmological, Quantum Space-Time. Physical Review D, 79, Article ID: 064030. http://dx.doi.org/10.1103/PhysRevD.79.064030
[]&&Ashtekar, A. and Sloan, D. (2010) Loop Quantum Cosmology and Slow Roll Inflation. Physical Review B, 694, 108-112.
[]&&Ashtekar, A. and Sloan, D. (2011) Probability of Inflation in Loop Quantum Cosmology. General Relativity and Gravitation, 43, . http://dx.doi.org/10.-011-1246-y
[]&&Agullo, I., Ashtekar, A. and Nelson, W. (2012) A Quantum Gravity Extension of the Inflationary Scenario. Physical Review Letters, 109, Article ID: 251301.
[]&&Agullo, I., Ashtekar, A. and Nelson, W. (2013) Extension of the Quantum Theory of Cosmological Perturbations to the Planck Era. Physical Review D, 87, Article ID: 043507. http://dx.doi.org/10.1103/PhysRevD.87.043507
[]&&Ashtekar, A. (2013) Loop Quantum Gravity and the Planck Regime of Cosmology. 23 p. (Plenary talk at the Conference: Relativity and Gravitation: 100 Years after Einstein in Prague). arXiv:
[]&&Agullo, I., Ashtekar, A. and Nelson, W. (2013) The Pre-Inflationary Dynamics of Loop Quantum Cosmology: Confronting Quantum Gravity with Observations. Classical and Quantum Gravity, 30, Article ID: 085014.
[]&&Peiris, H.V., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Inflation. The Astrophysical Journal Supplement Series, 148, 213. http://dx.doi.org/10.
[]&&Mukhanov, V. (1988) Quantum Theory of Gauge Invariant Cosmological Perturbations. Soviet Physics, JETP, 67, .
[]&&Mukhanov, V., Feldman, H. and Brandenberger, R. (1992) Theory of Cosmological Perturbations. Physics Report, 215, 203-233. http://dx.doi.org/10.73(92)90044-Z
[]&&Sasaki, M. (1986) Large Scale Quantum Fluctuations in the Inflationary Universe. Progress of Theoretical Physics, 76, . http://dx.doi.org/10.1143/PTP.76.1036
[]&&McAllister, L., Silverstein, E. and Westphal, A. (2010) Gravity Waves and Linear Inflation from Axion Monodromy. Physical Review D, 82, Article ID: 046003. http://dx.doi.org/10.1103/PhysRevD.82.046003
[]&&Martin, J., Ringeval, C. and Vennin, V. (2013) Encyclopaedia Inflationaris. 368 p. arXiv:
[]&&Lyth, D.H., Ungarelli, C. and Wands, D. (2003) Primordial Density Perturbation in the Curvaton Scenario. Physical Review D, 67, Article ID: 023503. http://dx.doi.org/10.1103/PhysRevD.67.023503
[]&&Bartolo, N., Matarrese, S. and Riotto, A. (2004) Non-Gaussianity in the Curvaton Scenario. Physical Review D, 69, Article ID: 043503. http://dx.doi.org/10.1103/PhysRevD.69.043503
[]&&Zaldarriaga, M. (2004) Non-Gaussianities in Models with a Varying Inflaton Decay Rate. Physical Review D, 69, Article ID: 043508. http://dx.doi.org/10.1103/PhysRevD.69.043508
[]&&Creminelli, P. and Senatore, L. (2007) A Smooth Bouncing Cosmology with Scale Invariant Spectrum. Journal of Cosmology and Astroparticle Physics, 2007. http://dx.doi.org/10.16/
[]&&Agullo, I. and Parker, L. (2011) Non-Gaussianity and the Stimulated Creation of Quanta in the Inflationary Universe. Physical Review D, 83, Article ID: 063526. http://dx.doi.org/10.1103/PhysRevD.83.063526
[]&&Cheung, C., Fizpatrick, A.L., Kaplan, J., Senatore, L. and Creminelli, P. (2008) The Effective Field Theory of Inflation. Journal of High Energy Physics, 2008. http://dx.doi.org/10.08/
[]&&Agullo, I. and Shandera, S. (2012) Large Non-Gaussian Halo Bias from Single Field Inflation. Journal of Cosmology and Astroparticle Physics, 2012. http://dx.doi.org/10.16/
[]&&Bennett, C., Larson, D., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement Series, 208, 20.
[]&&Treu, T., Marshall, P.J., et al. (2013) Dark Energy with Gravitational Lens Time Delays. 9 p. arXiv:
[]&&Meerburg, P.D., van der Schaar, J.P. and Corasanti, P.R. (2009) Signatures of Initial State Modification on Bispectrum Statics. Journal of Cosmology and Astroparticle Physics, 5. http://dx.doi.org/10.16/
[]&&Sugimura, K. and Komatsu, E. (2013) Bispectrum from Open Inflation. Journal of Cosmology and Astroparticle Physics, 11. http://dx.doi.org/10.16/
[]&&Silverstein, E. and Westphal, A. (2008) Monodromy in the CMB: Gravity Waves and String Inflation. Physical Review D, 78, Article ID: 106003. http://dx.doi.org/10.1103/PhysRevD.78.106003
[]&&Linde, A. (2014) Inflationary Cosmology after Planck 2013. 84 p. (Based on Lectures at the Les Houches School “Post-Planck Cosmology”, 2013). arXiv:
[]&&Martin, J., Ringeval, C. and Vennin, V. (2013) The Best Inflationary Models after Plank. 63 p. arXiv:
[]&&Kiefer, C., Polarski, D. and Starobinsky, A.A. (1998) Quantum to Classical Transition for Fluctuations in the Early Universe. International Journal of Modern Physics D, 7, 455-462. http://dx.doi.org/10.
[]&&Kiefer, C. and Polarski, D. (2009) Why Do Cosmological Perturbations Look Classical to Us? Advanced Science Letters, 2, 164-173. http://dx.doi.org/10.1166/asl.
[]&&Sudarsky, D. (2011) Shortcomings in the Understanding of Why Cosmological Perturbations Look Classical. International Journal of Modern Physics D, 20, 509-552. http://dx.doi.org/10.
[]&&Sliwa, K. (2013) Atlas Overview and Main Results. CERN Document Server: ATL-PHYS-PROC-.arXiv:
[]&&Penrose, R. (2011) Cycle of Time. Vintage Books, London.
Please enable JavaScript to view the
&&&OALib Suggest
Live SupportAsk us anything}

我要回帖

更多关于 在线翻译英语译汉语 的文章

更多推荐

版权声明:文章内容来源于网络,版权归原作者所有,如有侵权请点击这里与我们联系,我们将及时删除。

点击添加站长微信